Research Article
BibTex RIS Cite

Constant pseudo-angle lightlike surfaces

Year 2023, Volume: 72 Issue: 3, 737 - 760, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1133106

Abstract

The oriented angles between lightlike vectors cannot be defined properly compared to the timelike vectors in the Minkowski spacetime. Therefore, we use the pseudo-angles between any non-lightlike or lightlike vectors to develop the theory of lightlike surfaces having constant angle with a fixed nonlightlike direction. We investigate some geometric properties on these surfaces such as being a tangent developable. Besides, we construct the constant angle lightlike ruled surfaces by means of the null helices. We give several examples to illustrate the obtained surfaces.

References

  • Abdel-Baky A. R., Aldossary M. T., On the null scrolls in Minkowski 3-space, IOSR J. Math., 7 (2013), 11 – 16. https://doi.org/10.9790/5728-0761116
  • Ali, A. T., Mahmoud, S. R., Position vector of spacelike slant helices in Minkowski 3-space, Honam Mathematical J., 36(2) (2014), 233–251. https://doi.org/10.5831/HMJ.2014.36.2.233
  • Barros, M., Ferrandez, A., Null scrolls as fluctuating surfaces: A new simple way to construct extrinsic string solutions, J. High Energ. Phys, 5 (2012), 1–18. https://doi.org/10.1007/JHEP05(2012)068
  • Birman, G., Nomizu, K., Trigonometry in Lorentzian geometry, Amer. Math. Monthly, 91 (1984), 543–549. https://doi.org/10.2307/2323737
  • Camcı, Ç., İlarslan, K., Uçum, A., General helices with lightlike slope axis, Filomat, 32(2) (2018), 355–367. https://doi.org/10.2298/FIL1802355C
  • Cermelli, P., Di Scala, A. J., Constant angle surfaces in liquid crystals, Philos. Magazine, 87 (2007), 1871–1888. https://doi.org/10.1080/14786430601110364
  • Chandrasekhar S., The Mathematical Theory of Black Holes, Oxford Univ. Press, 1983.
  • Dillen, F., Fastenakels, J., Van der Veken, J., Vrancken, L., Constant angle surfaces in S2 X R, Monaths. Math., 152 (2007), 89–96. https://doi.org/10.1007/s00605-007-0461-9
  • Di Scala, A. C., Ruiz-Hernandez, G., Helix submanifolds of Euclidean spaces, Monatsh. Math., 157(3) (2009), 205–215.
  • Duggal K. L., Bejancu A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Dordrecht: Springer Sci. Business Media, 1996.
  • Duggal K. L., Foliations of lightlike hypersurfaces and their physical interpretation, Centr. Eur. J. Math., 10 (2012), 1789 – 1800.
  • Hawking S. W., The Event Horizons in Black Holes, Amsterdam, North Holland, 1972.
  • Helzer, G., A relativistic version of the Gauss–Bonnet formula, J. Differential Geom., 9 (1974), 507–512.
  • Izumiya, S., Lightlike developables in Minkowski 3-space, Demonstratio Mathematica, (2006). https://doi.org/10.1515/dema-2013-0236
  • Karadağ, H. B., Karadağ, M., Null generalized slant helices in Lorentzian space, Differential Geometry-Dynamical Systems, 10 (2008), 178-185.
  • Kosinka, J., Jüttler, B., Cubic helices in Minkowski space, Sitzungsber. Abt. II, 215 (2006), 13–35. https://doi.org/10.1553/SundA2006sSBII-13
  • Liu, T., Pei, D., Null helices and Cartan slant helices in Lorentz–Minkowski 3-space, International Journal of Geometric Methods in Modern Physics, 16(11) (2019), 1950179. https://doi.org/10.1142/S0219887819501792
  • Lopez, R., Munteanu, M. I., Constant angle surfaces in Minkowski space, Bull. Belg. Math. Soc. Simon Stevin, 18 (2011), 271–286. https://doi.org/10.36045/bbms/1307452077
  • Lucas, P., Ortega-Yag¨ues, J. A., Slant helices: a new approximation, Turk J Math, 43 (2019), 473 – 485. https://doi.org/10.3906/mat-1809-16
  • Munteanu, M. I., Nistor, A. I., A new approach on constant angle surfaces in E3, Turkish J. Math., 33 (2009), 107–116. https://doi.org/10.3906/mat-0802-32
  • Nesovic, E., On geometric interpretation of pseudo-angle in Minkowski plane,International Journal of Geometric Methods in Modern Physics, (2017). https://doi.org/10.1142/S0219887817500682
  • Palmer, B., Backlund transformations for surfaces in Minkowski space, J. Math. Phys., 31 (1990), 2872–2875. https://doi.org/10.1063/1.528939
  • Tuğ, G., Ekmekci, N., Construction of the null scrolls along lightlike submanifolds in $R^m+n_{v}$, Int. Elec. Journ. of Geom., 10(1) (2017), 31–38.
  • Tuğ, G., Ekmekci, N., Notes on the lightlike hypersurfaces along spacelike submanifolds, Ukrainian Mathematical Journal, 71 (2019), 1105–1114. https://doi.org/10.1007/s11253-019-01701-z
  • Kim, Y. H., Yoon, D. W., Classification of ruled surface in Minkowski 3-space, J. Geom. Phys., 49(1) (2004), 89–100. https://doi.org/10.1016/S0393-0440(03)00084-6
Year 2023, Volume: 72 Issue: 3, 737 - 760, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1133106

Abstract

References

  • Abdel-Baky A. R., Aldossary M. T., On the null scrolls in Minkowski 3-space, IOSR J. Math., 7 (2013), 11 – 16. https://doi.org/10.9790/5728-0761116
  • Ali, A. T., Mahmoud, S. R., Position vector of spacelike slant helices in Minkowski 3-space, Honam Mathematical J., 36(2) (2014), 233–251. https://doi.org/10.5831/HMJ.2014.36.2.233
  • Barros, M., Ferrandez, A., Null scrolls as fluctuating surfaces: A new simple way to construct extrinsic string solutions, J. High Energ. Phys, 5 (2012), 1–18. https://doi.org/10.1007/JHEP05(2012)068
  • Birman, G., Nomizu, K., Trigonometry in Lorentzian geometry, Amer. Math. Monthly, 91 (1984), 543–549. https://doi.org/10.2307/2323737
  • Camcı, Ç., İlarslan, K., Uçum, A., General helices with lightlike slope axis, Filomat, 32(2) (2018), 355–367. https://doi.org/10.2298/FIL1802355C
  • Cermelli, P., Di Scala, A. J., Constant angle surfaces in liquid crystals, Philos. Magazine, 87 (2007), 1871–1888. https://doi.org/10.1080/14786430601110364
  • Chandrasekhar S., The Mathematical Theory of Black Holes, Oxford Univ. Press, 1983.
  • Dillen, F., Fastenakels, J., Van der Veken, J., Vrancken, L., Constant angle surfaces in S2 X R, Monaths. Math., 152 (2007), 89–96. https://doi.org/10.1007/s00605-007-0461-9
  • Di Scala, A. C., Ruiz-Hernandez, G., Helix submanifolds of Euclidean spaces, Monatsh. Math., 157(3) (2009), 205–215.
  • Duggal K. L., Bejancu A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Dordrecht: Springer Sci. Business Media, 1996.
  • Duggal K. L., Foliations of lightlike hypersurfaces and their physical interpretation, Centr. Eur. J. Math., 10 (2012), 1789 – 1800.
  • Hawking S. W., The Event Horizons in Black Holes, Amsterdam, North Holland, 1972.
  • Helzer, G., A relativistic version of the Gauss–Bonnet formula, J. Differential Geom., 9 (1974), 507–512.
  • Izumiya, S., Lightlike developables in Minkowski 3-space, Demonstratio Mathematica, (2006). https://doi.org/10.1515/dema-2013-0236
  • Karadağ, H. B., Karadağ, M., Null generalized slant helices in Lorentzian space, Differential Geometry-Dynamical Systems, 10 (2008), 178-185.
  • Kosinka, J., Jüttler, B., Cubic helices in Minkowski space, Sitzungsber. Abt. II, 215 (2006), 13–35. https://doi.org/10.1553/SundA2006sSBII-13
  • Liu, T., Pei, D., Null helices and Cartan slant helices in Lorentz–Minkowski 3-space, International Journal of Geometric Methods in Modern Physics, 16(11) (2019), 1950179. https://doi.org/10.1142/S0219887819501792
  • Lopez, R., Munteanu, M. I., Constant angle surfaces in Minkowski space, Bull. Belg. Math. Soc. Simon Stevin, 18 (2011), 271–286. https://doi.org/10.36045/bbms/1307452077
  • Lucas, P., Ortega-Yag¨ues, J. A., Slant helices: a new approximation, Turk J Math, 43 (2019), 473 – 485. https://doi.org/10.3906/mat-1809-16
  • Munteanu, M. I., Nistor, A. I., A new approach on constant angle surfaces in E3, Turkish J. Math., 33 (2009), 107–116. https://doi.org/10.3906/mat-0802-32
  • Nesovic, E., On geometric interpretation of pseudo-angle in Minkowski plane,International Journal of Geometric Methods in Modern Physics, (2017). https://doi.org/10.1142/S0219887817500682
  • Palmer, B., Backlund transformations for surfaces in Minkowski space, J. Math. Phys., 31 (1990), 2872–2875. https://doi.org/10.1063/1.528939
  • Tuğ, G., Ekmekci, N., Construction of the null scrolls along lightlike submanifolds in $R^m+n_{v}$, Int. Elec. Journ. of Geom., 10(1) (2017), 31–38.
  • Tuğ, G., Ekmekci, N., Notes on the lightlike hypersurfaces along spacelike submanifolds, Ukrainian Mathematical Journal, 71 (2019), 1105–1114. https://doi.org/10.1007/s11253-019-01701-z
  • Kim, Y. H., Yoon, D. W., Classification of ruled surface in Minkowski 3-space, J. Geom. Phys., 49(1) (2004), 89–100. https://doi.org/10.1016/S0393-0440(03)00084-6
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Gül Tuğ 0000-0001-9453-3809

Publication Date September 30, 2023
Submission Date June 20, 2022
Acceptance Date January 17, 2023
Published in Issue Year 2023 Volume: 72 Issue: 3

Cite

APA Tuğ, G. (2023). Constant pseudo-angle lightlike surfaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(3), 737-760. https://doi.org/10.31801/cfsuasmas.1133106
AMA Tuğ G. Constant pseudo-angle lightlike surfaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2023;72(3):737-760. doi:10.31801/cfsuasmas.1133106
Chicago Tuğ, Gül. “Constant Pseudo-Angle Lightlike Surfaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 3 (September 2023): 737-60. https://doi.org/10.31801/cfsuasmas.1133106.
EndNote Tuğ G (September 1, 2023) Constant pseudo-angle lightlike surfaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 3 737–760.
IEEE G. Tuğ, “Constant pseudo-angle lightlike surfaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 3, pp. 737–760, 2023, doi: 10.31801/cfsuasmas.1133106.
ISNAD Tuğ, Gül. “Constant Pseudo-Angle Lightlike Surfaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/3 (September 2023), 737-760. https://doi.org/10.31801/cfsuasmas.1133106.
JAMA Tuğ G. Constant pseudo-angle lightlike surfaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:737–760.
MLA Tuğ, Gül. “Constant Pseudo-Angle Lightlike Surfaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 3, 2023, pp. 737-60, doi:10.31801/cfsuasmas.1133106.
Vancouver Tuğ G. Constant pseudo-angle lightlike surfaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(3):737-60.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.