On special singular curve couples of framed curves in 3D Lie groups
Year 2023,
Volume: 72 Issue: 3, 710 - 720, 30.09.2023
Bahar Doğan Yazıcı
,
Osman Zeki Okuyucu
,
Murat Tosun
Abstract
In this paper, we introduce Bertrand and Mannheim curves of framed curves, which are a special singular curve in 3D Lie groups. We explain the conditions for framed curves to be Bertrand curves and Mannheim curves in 3D Lie groups. We give relationships between framed curvatures and Lie curvatures of Bertrand and Mannheim curves of framed curves. In addition, we obtain the characterization of Bertrand and Mannheim curves according to the various frames of framed curves in 3D Lie groups.
References
- Aminov, Y., Differential Geometry and the Topology of Curves, Translated from the Russian by V. Gorkavy, Amsterdam, the Netherlands: Gordon and Breach Science Publishers, 2000.
- Bertrand, J., Memoire sur la theorie des courbes a double courbure, J. de Methematiques Pures et Appliquees, 15 (1850), 332–350 (in French).
- Çiftçi, Ü., A generalization of Lancert’s theorem, J. Geom. Phys., 59 (2009), 1597–1603. https://doi.org/10.1016/j.geomphys.2009.07.016
- Crouch, P., Silva Leite, F., The dynamic interpolation problem: On Riemannian manifolds, Lie groups and symmetric spaces, J. Dyn. Control Syst., 1(2) (1995), 177–202. https://doi.org/10.1007/BF02254638
- do Espirito-Santo, N., Fornari, S., Frensel, K., Ripoll, J., Constant mean curvature hypersurfaces in a Lie group with a bi-invariant metric, Manuscripta Math., 111(4) (2003), 459–470.
https://doi.org/10.1007/s00229-003-0357-5
- Doğan Yazıcı, B., Karakuş, S. Ö., Tosun, M., On the classification of framed rectifying curves in Euclidean space, Math. Methods Appl. Sci., 45(18) (2022), 12089–12098. http://dx.doi.org/10.1002/mma.7561
- Doğan Yazıcı, B., Okuyucu, O. Z., Tosun, M., Framed curves in three-dimensional Lie groups and a Berry phase model, J. Geom. Phys., 182 (2022), 104682. https://doi.org/10.1016/j.geomphys.2022.104682
- Fukunaga, T., Takahashi, M., Existence conditions of framed curves for smooth curves, J. Geo., 108 (2017), 763–774. https://doi.org/10.1007/s00022-017-0371-5
- Gök, İ., Okuyucu, O. Z., Ekmekci, N., Yaylı, Y., On Mannheim partner curves in three dimensional Lie groups, Miskolc Math. Notes, 15(2) (2014), 467–479. https://doi.org/10.18514/mmn.2014.682
- Honda, S., Takahashi, M., Framed curves in the Euclidean space, Adv. Geo., 16 (2016), 265–276. https://doi.org/10.1515/advgeom-2015-0035
- Honda, S., Takahashi, M., Bertrand and Mannheim curves of framed curves in the 3-dimensional Euclidean space, Turk. J. Math., 44 (2020), 883–899. https://doi.org/10.3906/mat-1905-63
- Izumiya, S., Takeuchi, N., Generic properties of helices and Bertrand curves, J. Geo., 74 (2002), 97–109. https://doi.org/10.1007/PL00012543
- Liu, H., Wang, F., Mannheim partner curves in 3-space, J. Geo., 88 (2008), 120–126. https://doi.org/10.1007/s00022-007-1949-0
- Okuyucu, 0. Z., Gök, İ., Yaylı, Y., Ekmekci, N., Slant helices in three dimensional Lie groups, Appl. Math. Comput., 221 (2013), 672–683. https://doi.org/10.1016/j.amc.2013.07.008
- Okuyucu, 0. Z., Gök, İ., Yaylı, Y., Ekmekci, N., Bertrand curves in three dimensional Lie groups, Miskolc Math. Notes, 17(2) (2017), 999–1010. https://doi.org/10.18514/MMN.2017
- Wang, Y., Pei, D., Gao, R., Generic properties of framed rectifying curves, Mathematics, 7(1) (2019), 37. https://doi.org/10.3390/math7010037
Year 2023,
Volume: 72 Issue: 3, 710 - 720, 30.09.2023
Bahar Doğan Yazıcı
,
Osman Zeki Okuyucu
,
Murat Tosun
References
- Aminov, Y., Differential Geometry and the Topology of Curves, Translated from the Russian by V. Gorkavy, Amsterdam, the Netherlands: Gordon and Breach Science Publishers, 2000.
- Bertrand, J., Memoire sur la theorie des courbes a double courbure, J. de Methematiques Pures et Appliquees, 15 (1850), 332–350 (in French).
- Çiftçi, Ü., A generalization of Lancert’s theorem, J. Geom. Phys., 59 (2009), 1597–1603. https://doi.org/10.1016/j.geomphys.2009.07.016
- Crouch, P., Silva Leite, F., The dynamic interpolation problem: On Riemannian manifolds, Lie groups and symmetric spaces, J. Dyn. Control Syst., 1(2) (1995), 177–202. https://doi.org/10.1007/BF02254638
- do Espirito-Santo, N., Fornari, S., Frensel, K., Ripoll, J., Constant mean curvature hypersurfaces in a Lie group with a bi-invariant metric, Manuscripta Math., 111(4) (2003), 459–470.
https://doi.org/10.1007/s00229-003-0357-5
- Doğan Yazıcı, B., Karakuş, S. Ö., Tosun, M., On the classification of framed rectifying curves in Euclidean space, Math. Methods Appl. Sci., 45(18) (2022), 12089–12098. http://dx.doi.org/10.1002/mma.7561
- Doğan Yazıcı, B., Okuyucu, O. Z., Tosun, M., Framed curves in three-dimensional Lie groups and a Berry phase model, J. Geom. Phys., 182 (2022), 104682. https://doi.org/10.1016/j.geomphys.2022.104682
- Fukunaga, T., Takahashi, M., Existence conditions of framed curves for smooth curves, J. Geo., 108 (2017), 763–774. https://doi.org/10.1007/s00022-017-0371-5
- Gök, İ., Okuyucu, O. Z., Ekmekci, N., Yaylı, Y., On Mannheim partner curves in three dimensional Lie groups, Miskolc Math. Notes, 15(2) (2014), 467–479. https://doi.org/10.18514/mmn.2014.682
- Honda, S., Takahashi, M., Framed curves in the Euclidean space, Adv. Geo., 16 (2016), 265–276. https://doi.org/10.1515/advgeom-2015-0035
- Honda, S., Takahashi, M., Bertrand and Mannheim curves of framed curves in the 3-dimensional Euclidean space, Turk. J. Math., 44 (2020), 883–899. https://doi.org/10.3906/mat-1905-63
- Izumiya, S., Takeuchi, N., Generic properties of helices and Bertrand curves, J. Geo., 74 (2002), 97–109. https://doi.org/10.1007/PL00012543
- Liu, H., Wang, F., Mannheim partner curves in 3-space, J. Geo., 88 (2008), 120–126. https://doi.org/10.1007/s00022-007-1949-0
- Okuyucu, 0. Z., Gök, İ., Yaylı, Y., Ekmekci, N., Slant helices in three dimensional Lie groups, Appl. Math. Comput., 221 (2013), 672–683. https://doi.org/10.1016/j.amc.2013.07.008
- Okuyucu, 0. Z., Gök, İ., Yaylı, Y., Ekmekci, N., Bertrand curves in three dimensional Lie groups, Miskolc Math. Notes, 17(2) (2017), 999–1010. https://doi.org/10.18514/MMN.2017
- Wang, Y., Pei, D., Gao, R., Generic properties of framed rectifying curves, Mathematics, 7(1) (2019), 37. https://doi.org/10.3390/math7010037