Research Article
BibTex RIS Cite

The bispectral representation of Markov switching bilinear models

Year 2023, Volume: 72 Issue: 3, 857 - 866, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1232916

Abstract

This article formulae for the third-order theoretical moments for superdiagonal and subdiagonal of the Markov-switching bilinear $X_{t}=c(s_{t})X_{t-k}e_{t-l}+e_{t}$, $k,l \in\mathrm{N}$, and an expression for the bispectral density function are obtained.

References

  • Bibi, A., Aknouche, A., Stationnarite et $\beta$-melange des processus bilineaires generaux a changement de regime markovien, C.R. Acad. Sci. Paris, Ser. I., 348(3-4) (2010), 185−188. https://doi.org/10.1016/j.crma.2009.12.015
  • Brillinger, D.R., Rosenblatt, M., Asymptotic theory of estimates of kth order spectra, In Spectral Analysis of Time Series, (ed. by B. Harris), Proc. Nat.l. Acad. Sci. USA., 57(2) (1967a) , 206-210. https://doi.org/10.1073/pnas.57.2.206
  • Brillinger, D.R., Rosenblatt, M., Computation and Interpretation of kth Order Spectra, In Spectral Analysis of Time Series, (ed. by B. Harris), Wiley, New York, 1967, 189-232.
  • Costa, O.L.V., Fragoso, M.D., Marques, R.P., Discrete Time Markov Jump Linear Systems, Springer, London, 2005. https://doi.org/10.1007/b138575
  • Gabr, M.M., Subba Rao, T., The estimation and prediction of subset bilinear time series models with applications, J. Time Series Anal., 2(3) (1981), 155-171. https://doi.org/10.1111/j.1467-9892.1981.tb00319.x
  • Gabr, M.M., On the third-order moment structure and bispectral analysis of some bilinear time series, J. Time Series Anal., 9(1) (1988), 11 − 20. https://doi.org/10.1111/j.1467-9892.1988.tb00449.x
  • Hamilton, J.D., A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica, 57(2) (1989), 357-384. https://doi.org/10.2307/1912559
  • Hamilton, J.D., Analysis of time series subject to changes in regime, Journal of Econometrics, 45(1-2) (1990), 39 − 70. https://doi.org/10.1016/0304-4076(90)90093-9
  • Hasselmann, K., Munk, W., MacDonald, G., Bispectra of Ocean Waves, Proc. Symp. Time Series Analysis, (ed. M. Rosenblatt.), John Wiley, 1963, 135 − 139.
  • Francq, C., Zakoian, J.M., Stationaruty of multivariate Markov switching ARMA models, Journal of Econometrics, 102(2) (2001) , 339 − 364. https://doi.org/10.1016/S0304-4076(01)00057-4
  • Helland, K.N., Lii, K.S., Rosenblatt, M., Bispectra and energy transfer in grid-generated turbulence, Developments in Statistics, (Ed. P. R. Krishnaiah), Academic Press, New York, 2 (1979) , 123 − 155. https://doi.org/10.1016/B978-0-12-426602-5.50009-8
  • Lii, K.S., Rosenblatt, M., Deconvolution and estimation of transfer function phase and coefficients for non-Gaussian linear processes, Ann. Statist., 10(4) (1982) , 1195 − 1208. https://doi.org/10.1214/aos/1176345984
  • Pataracchia, B., The spectral representation of Markov switching ARMA models, Economics Letters, 112(1) (2011) , 11 − 15. https://doi.org/10.1016/j.econlet.2011.03.003
  • Rosenblatt, M. Remarks on Higher Order Spectra, Multivariate Analysis, Academic Press, New York, 1966, 383 − 389.
  • Rosenblatt, M., Van Ness, J.W., Estimation of the bispectrum, Ann. Math. Statist., 36(4) (1965) , 1120 − 1136. https://doi.org/10.1214/aoms/1177699987
  • Subba Rao, T., On the theory of bilinear time series models, J. Roy. Statist. Soc. B, 43(2) (1981), 244 − 255. https://doi.org/10.1111/j.2517-6161.1981.tb01177.x
  • Subba Rao, T., Gabr, M.M., An Introduction to Bispectral Analysis and Bilinear Time Series Models, Lecture Notes in Statistics, Berlin: Springer-Verlag, 1984. https://doi.org/10.1007/978-1-4684-6318-7
  • Van Ness, J.W., Asymptotic normality of bispectral estimates, Ann. Math. Statist., 37(5) (1966) , 1257 − 1275. https://doi.org/10.1214/aoms/1177699269
Year 2023, Volume: 72 Issue: 3, 857 - 866, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1232916

Abstract

References

  • Bibi, A., Aknouche, A., Stationnarite et $\beta$-melange des processus bilineaires generaux a changement de regime markovien, C.R. Acad. Sci. Paris, Ser. I., 348(3-4) (2010), 185−188. https://doi.org/10.1016/j.crma.2009.12.015
  • Brillinger, D.R., Rosenblatt, M., Asymptotic theory of estimates of kth order spectra, In Spectral Analysis of Time Series, (ed. by B. Harris), Proc. Nat.l. Acad. Sci. USA., 57(2) (1967a) , 206-210. https://doi.org/10.1073/pnas.57.2.206
  • Brillinger, D.R., Rosenblatt, M., Computation and Interpretation of kth Order Spectra, In Spectral Analysis of Time Series, (ed. by B. Harris), Wiley, New York, 1967, 189-232.
  • Costa, O.L.V., Fragoso, M.D., Marques, R.P., Discrete Time Markov Jump Linear Systems, Springer, London, 2005. https://doi.org/10.1007/b138575
  • Gabr, M.M., Subba Rao, T., The estimation and prediction of subset bilinear time series models with applications, J. Time Series Anal., 2(3) (1981), 155-171. https://doi.org/10.1111/j.1467-9892.1981.tb00319.x
  • Gabr, M.M., On the third-order moment structure and bispectral analysis of some bilinear time series, J. Time Series Anal., 9(1) (1988), 11 − 20. https://doi.org/10.1111/j.1467-9892.1988.tb00449.x
  • Hamilton, J.D., A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica, 57(2) (1989), 357-384. https://doi.org/10.2307/1912559
  • Hamilton, J.D., Analysis of time series subject to changes in regime, Journal of Econometrics, 45(1-2) (1990), 39 − 70. https://doi.org/10.1016/0304-4076(90)90093-9
  • Hasselmann, K., Munk, W., MacDonald, G., Bispectra of Ocean Waves, Proc. Symp. Time Series Analysis, (ed. M. Rosenblatt.), John Wiley, 1963, 135 − 139.
  • Francq, C., Zakoian, J.M., Stationaruty of multivariate Markov switching ARMA models, Journal of Econometrics, 102(2) (2001) , 339 − 364. https://doi.org/10.1016/S0304-4076(01)00057-4
  • Helland, K.N., Lii, K.S., Rosenblatt, M., Bispectra and energy transfer in grid-generated turbulence, Developments in Statistics, (Ed. P. R. Krishnaiah), Academic Press, New York, 2 (1979) , 123 − 155. https://doi.org/10.1016/B978-0-12-426602-5.50009-8
  • Lii, K.S., Rosenblatt, M., Deconvolution and estimation of transfer function phase and coefficients for non-Gaussian linear processes, Ann. Statist., 10(4) (1982) , 1195 − 1208. https://doi.org/10.1214/aos/1176345984
  • Pataracchia, B., The spectral representation of Markov switching ARMA models, Economics Letters, 112(1) (2011) , 11 − 15. https://doi.org/10.1016/j.econlet.2011.03.003
  • Rosenblatt, M. Remarks on Higher Order Spectra, Multivariate Analysis, Academic Press, New York, 1966, 383 − 389.
  • Rosenblatt, M., Van Ness, J.W., Estimation of the bispectrum, Ann. Math. Statist., 36(4) (1965) , 1120 − 1136. https://doi.org/10.1214/aoms/1177699987
  • Subba Rao, T., On the theory of bilinear time series models, J. Roy. Statist. Soc. B, 43(2) (1981), 244 − 255. https://doi.org/10.1111/j.2517-6161.1981.tb01177.x
  • Subba Rao, T., Gabr, M.M., An Introduction to Bispectral Analysis and Bilinear Time Series Models, Lecture Notes in Statistics, Berlin: Springer-Verlag, 1984. https://doi.org/10.1007/978-1-4684-6318-7
  • Van Ness, J.W., Asymptotic normality of bispectral estimates, Ann. Math. Statist., 37(5) (1966) , 1257 − 1275. https://doi.org/10.1214/aoms/1177699269
There are 18 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Research Articles
Authors

Ahmed Ghezal 0000-0001-6939-0199

Imane Zemmouri 0000-0001-8397-4924

Publication Date September 30, 2023
Submission Date January 11, 2023
Acceptance Date February 15, 2023
Published in Issue Year 2023 Volume: 72 Issue: 3

Cite

APA Ghezal, A., & Zemmouri, I. (2023). The bispectral representation of Markov switching bilinear models. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(3), 857-866. https://doi.org/10.31801/cfsuasmas.1232916
AMA Ghezal A, Zemmouri I. The bispectral representation of Markov switching bilinear models. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2023;72(3):857-866. doi:10.31801/cfsuasmas.1232916
Chicago Ghezal, Ahmed, and Imane Zemmouri. “The Bispectral Representation of Markov Switching Bilinear Models”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 3 (September 2023): 857-66. https://doi.org/10.31801/cfsuasmas.1232916.
EndNote Ghezal A, Zemmouri I (September 1, 2023) The bispectral representation of Markov switching bilinear models. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 3 857–866.
IEEE A. Ghezal and I. Zemmouri, “The bispectral representation of Markov switching bilinear models”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 3, pp. 857–866, 2023, doi: 10.31801/cfsuasmas.1232916.
ISNAD Ghezal, Ahmed - Zemmouri, Imane. “The Bispectral Representation of Markov Switching Bilinear Models”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/3 (September 2023), 857-866. https://doi.org/10.31801/cfsuasmas.1232916.
JAMA Ghezal A, Zemmouri I. The bispectral representation of Markov switching bilinear models. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:857–866.
MLA Ghezal, Ahmed and Imane Zemmouri. “The Bispectral Representation of Markov Switching Bilinear Models”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 3, 2023, pp. 857-66, doi:10.31801/cfsuasmas.1232916.
Vancouver Ghezal A, Zemmouri I. The bispectral representation of Markov switching bilinear models. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(3):857-66.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.