Research Article
BibTex RIS Cite

Some bounds for the k-generalized digamma function

Year 2023, Volume: 72 Issue: 4, 1126 - 1140, 29.12.2023
https://doi.org/10.31801/cfsuasmas.1230703

Abstract

We presented some monotonicity properties for the k-generalized digamma function $\psi_{k}(h)$ and we established some new bounds for $\psi_{k}^{(s)}(h),$ $s\in \mathbb{N}\cup\{0\},$ which refine recent results

References

  • Abramowitz, M., Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1965.
  • Batir, N., Sharp bounds for the psi function and harmonic numbers, Math. Inequal.Appl, 14(4) (2011), 917-925. http://files.ele-math.com/abstracts/mia-14-77-abs.pdf
  • Coffey, M. W., One integral in three ways: moments of a quantum distribution, J. Phys. A: Math. Gen., 39 (2006), 1425-1431. https://doi.org/10.1088/0305-4470/39/6/015
  • Diaz, R., Pariguan, E., On hypergeometric functions and k−Pochhammer symbol, Divulg. Mat., 15(2) (2007), 179-192. https://doi.org/10.48550/arXiv.math/0405596
  • Guo, B.-N., Qi, F., Sharp inequalities for the psi function and harmonic numbers, Analysis, 34(2) (2014), 201-208. DOI 10.1515/anly-2014-0001.
  • Kokologiannaki, C. G., Krasniqi, V., Some properties of the k-gamma function, Le Matematiche, 68(1) (2013), 13-22. DOI 10.4418/2013.68.1.2
  • Mansour, M., Determining the k-generalized gamma function Γk(x) by functional equations, Int. J. Contemp. Math. Sciences, 4(21) (2009), 653-660. http://www.m-hikari.com/ijcmspassword2009/21-24-2009/mansourIJCMS21-24-2009.pdf
  • Miller, A. R., Summations for certain series containing the digamma function, J. Phys. A: Math. Gen., 39 (2006), 3011-3020. DOI 10.1088/0305-4470/39/12/010
  • Moustafa, H., Almuashi, H., Mahmoud, M., On some complete monotonicity of functions related to generalized k−gamma function, J. Math., 2021 (2021), 1-9. https://doi.org/10.1155/2021/9941377
  • Muqattash, I., Yahdi, M., Infinite family of approximations of the digamma function, Math. Comput. Modelling, 43(11-12) (2006), 1329-1336. https://doi.org/10.1016/j.mcm.2005.02.010
  • Nantomah, K., Iddrisu, M. M., The k-analogue of some inequalities for the gamma function, Electron. J. Math. Anal. Appl., 2(2) (2014), 172-177.
  • Nantomah, K., Nisar, K. S., Gehlot, K. S., On a k-extension of the Nielsen’s (beta)-function, Int. J. Nonlinear Anal. Appl., 9(2) (2018), 191-201. http://dx.doi.org/10.22075/ijnaa.2018.12972.1668
  • Qi, F., Guo, S.-L., Guo, B.-N., Complete monotonicity of some functions involving polygamma functions, J. Comput. Appl. Math., 233 (2010), 2149-2160. https://doi.org/10.1016/j.cam.2009.09.044
  • Qiu, S.-L., Vuorinen, M., Some properties of the gamma and psi functions with applications, Math. Comp., 74(250) (2005), 723-742. DOI 10.1090/S0025-5718-04-01675-8
  • Widder, D. V., The Laplace Transform, Princeton University Press, Princeton, 1946.
  • Wilkins, B. D., Hromadka, T. V., Using the digamma function for basis functions in mesh-free computational methods, Engineering Analysis with Boundary Elements, 131 (2021), 218-227. https://doi.org/10.1016/j.enganabound.2021.06.004
  • Yildirim, E., Monotonicity properties on k−digamma function and its related inequalities, J. Math. Inequal., 14(1) (2020), 161-173. https://doi.org/10.7153/jmi-2020-14-12
  • Yildirim, E., Ege, I., On k-analogues of digamma and polygamma functions, J. Class. Anal., 13(2) (2018), 123-131. https://doi.org/10.7153/jca-2018-13-08
  • Yin, L., Huag, L. G., Song, Z. M., Dou, X. K., Some monotonicity properties and inequalities for the generalized digamma and polygamma functions, J. Inequal. Appl., 1 (2018), 249. https://doi.org/10.1186/s13660-018-1844-2
  • Yin, L., Zhang, J., Lin, X., Complete monotonicity related to the k-polygamma functions with applications, Ad. Diff. Eq., (2019), 1-10. https://doi.org/10.1186/s13662-019-2299-6
Year 2023, Volume: 72 Issue: 4, 1126 - 1140, 29.12.2023
https://doi.org/10.31801/cfsuasmas.1230703

Abstract

References

  • Abramowitz, M., Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1965.
  • Batir, N., Sharp bounds for the psi function and harmonic numbers, Math. Inequal.Appl, 14(4) (2011), 917-925. http://files.ele-math.com/abstracts/mia-14-77-abs.pdf
  • Coffey, M. W., One integral in three ways: moments of a quantum distribution, J. Phys. A: Math. Gen., 39 (2006), 1425-1431. https://doi.org/10.1088/0305-4470/39/6/015
  • Diaz, R., Pariguan, E., On hypergeometric functions and k−Pochhammer symbol, Divulg. Mat., 15(2) (2007), 179-192. https://doi.org/10.48550/arXiv.math/0405596
  • Guo, B.-N., Qi, F., Sharp inequalities for the psi function and harmonic numbers, Analysis, 34(2) (2014), 201-208. DOI 10.1515/anly-2014-0001.
  • Kokologiannaki, C. G., Krasniqi, V., Some properties of the k-gamma function, Le Matematiche, 68(1) (2013), 13-22. DOI 10.4418/2013.68.1.2
  • Mansour, M., Determining the k-generalized gamma function Γk(x) by functional equations, Int. J. Contemp. Math. Sciences, 4(21) (2009), 653-660. http://www.m-hikari.com/ijcmspassword2009/21-24-2009/mansourIJCMS21-24-2009.pdf
  • Miller, A. R., Summations for certain series containing the digamma function, J. Phys. A: Math. Gen., 39 (2006), 3011-3020. DOI 10.1088/0305-4470/39/12/010
  • Moustafa, H., Almuashi, H., Mahmoud, M., On some complete monotonicity of functions related to generalized k−gamma function, J. Math., 2021 (2021), 1-9. https://doi.org/10.1155/2021/9941377
  • Muqattash, I., Yahdi, M., Infinite family of approximations of the digamma function, Math. Comput. Modelling, 43(11-12) (2006), 1329-1336. https://doi.org/10.1016/j.mcm.2005.02.010
  • Nantomah, K., Iddrisu, M. M., The k-analogue of some inequalities for the gamma function, Electron. J. Math. Anal. Appl., 2(2) (2014), 172-177.
  • Nantomah, K., Nisar, K. S., Gehlot, K. S., On a k-extension of the Nielsen’s (beta)-function, Int. J. Nonlinear Anal. Appl., 9(2) (2018), 191-201. http://dx.doi.org/10.22075/ijnaa.2018.12972.1668
  • Qi, F., Guo, S.-L., Guo, B.-N., Complete monotonicity of some functions involving polygamma functions, J. Comput. Appl. Math., 233 (2010), 2149-2160. https://doi.org/10.1016/j.cam.2009.09.044
  • Qiu, S.-L., Vuorinen, M., Some properties of the gamma and psi functions with applications, Math. Comp., 74(250) (2005), 723-742. DOI 10.1090/S0025-5718-04-01675-8
  • Widder, D. V., The Laplace Transform, Princeton University Press, Princeton, 1946.
  • Wilkins, B. D., Hromadka, T. V., Using the digamma function for basis functions in mesh-free computational methods, Engineering Analysis with Boundary Elements, 131 (2021), 218-227. https://doi.org/10.1016/j.enganabound.2021.06.004
  • Yildirim, E., Monotonicity properties on k−digamma function and its related inequalities, J. Math. Inequal., 14(1) (2020), 161-173. https://doi.org/10.7153/jmi-2020-14-12
  • Yildirim, E., Ege, I., On k-analogues of digamma and polygamma functions, J. Class. Anal., 13(2) (2018), 123-131. https://doi.org/10.7153/jca-2018-13-08
  • Yin, L., Huag, L. G., Song, Z. M., Dou, X. K., Some monotonicity properties and inequalities for the generalized digamma and polygamma functions, J. Inequal. Appl., 1 (2018), 249. https://doi.org/10.1186/s13660-018-1844-2
  • Yin, L., Zhang, J., Lin, X., Complete monotonicity related to the k-polygamma functions with applications, Ad. Diff. Eq., (2019), 1-10. https://doi.org/10.1186/s13662-019-2299-6
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Hesham Moustafa 0000-0002-2792-6239

Mansour Mahmoud This is me 0000-0002-5918-1913

Ahmed Talat This is me 0000-0001-7702-8093

Publication Date December 29, 2023
Submission Date January 6, 2023
Acceptance Date September 16, 2023
Published in Issue Year 2023 Volume: 72 Issue: 4

Cite

APA Moustafa, H., Mahmoud, M., & Talat, A. (2023). Some bounds for the k-generalized digamma function. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(4), 1126-1140. https://doi.org/10.31801/cfsuasmas.1230703
AMA Moustafa H, Mahmoud M, Talat A. Some bounds for the k-generalized digamma function. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2023;72(4):1126-1140. doi:10.31801/cfsuasmas.1230703
Chicago Moustafa, Hesham, Mansour Mahmoud, and Ahmed Talat. “Some Bounds for the K-Generalized Digamma Function”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 4 (December 2023): 1126-40. https://doi.org/10.31801/cfsuasmas.1230703.
EndNote Moustafa H, Mahmoud M, Talat A (December 1, 2023) Some bounds for the k-generalized digamma function. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 4 1126–1140.
IEEE H. Moustafa, M. Mahmoud, and A. Talat, “Some bounds for the k-generalized digamma function”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 4, pp. 1126–1140, 2023, doi: 10.31801/cfsuasmas.1230703.
ISNAD Moustafa, Hesham et al. “Some Bounds for the K-Generalized Digamma Function”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/4 (December 2023), 1126-1140. https://doi.org/10.31801/cfsuasmas.1230703.
JAMA Moustafa H, Mahmoud M, Talat A. Some bounds for the k-generalized digamma function. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:1126–1140.
MLA Moustafa, Hesham et al. “Some Bounds for the K-Generalized Digamma Function”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 4, 2023, pp. 1126-40, doi:10.31801/cfsuasmas.1230703.
Vancouver Moustafa H, Mahmoud M, Talat A. Some bounds for the k-generalized digamma function. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(4):1126-40.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.