Research Article
BibTex RIS Cite

Year 2025, Volume: 74 Issue: 2, 254 - 266, 19.06.2025
https://doi.org/10.31801/cfsuasmas.1515007

Abstract

References

  • Ademoğulları, K., Kahramaner, Y., Polatoğlu, Y., $q$-harmonic mappings for which analytic part is $q$-convex functions, Nonlinear Anal. Differ. Equ., 4 (2016), 283-293.
  • Agrawal, S., Sahoo, S. K., A generalization of starlike functions of order alpha, Hokkaido Math. J., 46 (2017), 15-27.
  • Arif, M., Rani, L., Raza, M., Zaprawa, P., Fourth Hankel determinant for the family of functions with bounded turning, Bull. Korean Math. Soc., 55(6) (2018), 1703-1711.
  • Arif, M., Srivastava, H. M., Umar, S., Some applications of a $q$-analogue of the Ruscheweyh type operator for multivalent functions, RACSAM, 113 (2019), 1211-1221.
  • Arif, M., Ullah, I., Raza, M., Zaprawa, P., Investigation of the fifth Hankel determinant for a family of functions with bounded turnings, Math. Slovaca, 70(2) (2020), 319-328.
  • Arif, M., Ul-Haq, M., Liu, J. L., A subfamily of univalent functions associated with $q$-analogue of Noor integral operator, J. Funct. Spac., 3818915 (2018).
  • Çetinkaya, A., Polatoğlu, Y., $q$-Harmonic mappings for which analytic part is $q$-convex functions of complex order, Hacet. J. Math. Stat., 47 (2018), 813-820.
  • Ernst, T., A Comprehensive Treatment of $q$-Calculus, Springer, 2012.
  • Goodman, A. W., Univalent Functions, Polygonal Publishing House, 1983.
  • Govindaraj, M., Sivasubramanian, S., On a class of analytic functions related to conic domains involving $q$-calculus, Anal. Mathematica., 43 (2017), 475-487.
  • Ismail, M. E. H., Markes, E., Styer, D., A generalization of starlike functions, Complex Var., 14 (1990), 77-84.
  • Jackson, F. H., On $q$-functions and certain difference operator, Amer. J. Math., 46 (1908), 253-281.
  • Jackson, F. H., On $q$-definite integrals, Q. J. Pure Appl. Math., 41 (1910), 193-203.
  • Kanas, S., R˘aducanu, D., Some classes of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183-1196.
  • Noor, K. I., On generalized $q$-close-to-convexity, Appl. Math. Inf. Sci., 11 (2017), 1383-1388.
  • Noor, K. I., Badar, R. S., On a class of quantum alpha-convex functions, J. Appl. Math. Info., 36 (2018), 541-548.
  • Noor, K. I., Riaz, S., Generalized $q$-starlike functions, Studia Sci. Math. Hungar., 54 (2017), 509-522.
  • Noor, K. I., Riaz, S., Noor, M. A., On $q$-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3-11.
  • Khan, Q., Arif, M., Raza, M., Srivastava, G., Tang, H., Rehman, S., Some applications of a new integral operator in $q$-analog for multivalent functions, Mathematics, 7(12) (2019), 1178.
  • Răducanu, D., Srivastava, H. M., A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct., 18 (2017), 933-943.
  • Sahoo, S. K., Sharma, N. L., On a generalization of close-to-convex functions, Ann. Polon. Math., 113 (2015), 93-108.
  • Shah, S. A., Noor, K. I., Study on the $q$-analogue of a certain family of linear operators, Turk. J. Math., 43 (2019), 2707-2714.
  • Shamsan, H., Latha, S., On generalized bounded Mocanu variation related to $q$-derivative and conic regions, Ann. Pure Appl. Math., 17 (2018), 67-83.
  • Srivastava, H. M., Univalent Functions, Fractional Calculus and Their Applications, John Wiley and Sons, 1989.
  • Srivastava, H. M., Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327-344.
  • Srivastava, H. M., Arif, M., Raza, M., Convolution properties of meromorphically harmonic functions defined by a generalized convolution $q$-derivative operator, AIMS Math., 6(6) (2021), 5869-5885.
  • Srivastava, H. M., Tahir, M., Khan, B., Ahmed, Q. Z., Khan, N., Some general classes of $q$-starlike functions associated with the Janowski functions, Symmetry, 11(292) (2019).

Applications of $q$-Srivastava-Attiya operator on subclasses of analytic functions

Year 2025, Volume: 74 Issue: 2, 254 - 266, 19.06.2025
https://doi.org/10.31801/cfsuasmas.1515007

Abstract

The aim of the article is to investigate the applications of $q$-Srivastava-Attiya integral operator on the subclasses of $q$-starlike, $q$-convex and $q$-close-to-convex functions. The results are established by using the subordination result and $q$-analogue of Jack's Lemma. The characteristic properties including necessary condition and its applications, inclusions and integral preservations of the defined classes in the context of $q$-Bernardi operator are established.

References

  • Ademoğulları, K., Kahramaner, Y., Polatoğlu, Y., $q$-harmonic mappings for which analytic part is $q$-convex functions, Nonlinear Anal. Differ. Equ., 4 (2016), 283-293.
  • Agrawal, S., Sahoo, S. K., A generalization of starlike functions of order alpha, Hokkaido Math. J., 46 (2017), 15-27.
  • Arif, M., Rani, L., Raza, M., Zaprawa, P., Fourth Hankel determinant for the family of functions with bounded turning, Bull. Korean Math. Soc., 55(6) (2018), 1703-1711.
  • Arif, M., Srivastava, H. M., Umar, S., Some applications of a $q$-analogue of the Ruscheweyh type operator for multivalent functions, RACSAM, 113 (2019), 1211-1221.
  • Arif, M., Ullah, I., Raza, M., Zaprawa, P., Investigation of the fifth Hankel determinant for a family of functions with bounded turnings, Math. Slovaca, 70(2) (2020), 319-328.
  • Arif, M., Ul-Haq, M., Liu, J. L., A subfamily of univalent functions associated with $q$-analogue of Noor integral operator, J. Funct. Spac., 3818915 (2018).
  • Çetinkaya, A., Polatoğlu, Y., $q$-Harmonic mappings for which analytic part is $q$-convex functions of complex order, Hacet. J. Math. Stat., 47 (2018), 813-820.
  • Ernst, T., A Comprehensive Treatment of $q$-Calculus, Springer, 2012.
  • Goodman, A. W., Univalent Functions, Polygonal Publishing House, 1983.
  • Govindaraj, M., Sivasubramanian, S., On a class of analytic functions related to conic domains involving $q$-calculus, Anal. Mathematica., 43 (2017), 475-487.
  • Ismail, M. E. H., Markes, E., Styer, D., A generalization of starlike functions, Complex Var., 14 (1990), 77-84.
  • Jackson, F. H., On $q$-functions and certain difference operator, Amer. J. Math., 46 (1908), 253-281.
  • Jackson, F. H., On $q$-definite integrals, Q. J. Pure Appl. Math., 41 (1910), 193-203.
  • Kanas, S., R˘aducanu, D., Some classes of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183-1196.
  • Noor, K. I., On generalized $q$-close-to-convexity, Appl. Math. Inf. Sci., 11 (2017), 1383-1388.
  • Noor, K. I., Badar, R. S., On a class of quantum alpha-convex functions, J. Appl. Math. Info., 36 (2018), 541-548.
  • Noor, K. I., Riaz, S., Generalized $q$-starlike functions, Studia Sci. Math. Hungar., 54 (2017), 509-522.
  • Noor, K. I., Riaz, S., Noor, M. A., On $q$-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3-11.
  • Khan, Q., Arif, M., Raza, M., Srivastava, G., Tang, H., Rehman, S., Some applications of a new integral operator in $q$-analog for multivalent functions, Mathematics, 7(12) (2019), 1178.
  • Răducanu, D., Srivastava, H. M., A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct., 18 (2017), 933-943.
  • Sahoo, S. K., Sharma, N. L., On a generalization of close-to-convex functions, Ann. Polon. Math., 113 (2015), 93-108.
  • Shah, S. A., Noor, K. I., Study on the $q$-analogue of a certain family of linear operators, Turk. J. Math., 43 (2019), 2707-2714.
  • Shamsan, H., Latha, S., On generalized bounded Mocanu variation related to $q$-derivative and conic regions, Ann. Pure Appl. Math., 17 (2018), 67-83.
  • Srivastava, H. M., Univalent Functions, Fractional Calculus and Their Applications, John Wiley and Sons, 1989.
  • Srivastava, H. M., Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327-344.
  • Srivastava, H. M., Arif, M., Raza, M., Convolution properties of meromorphically harmonic functions defined by a generalized convolution $q$-derivative operator, AIMS Math., 6(6) (2021), 5869-5885.
  • Srivastava, H. M., Tahir, M., Khan, B., Ahmed, Q. Z., Khan, N., Some general classes of $q$-starlike functions associated with the Janowski functions, Symmetry, 11(292) (2019).
There are 27 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Research Articles
Authors

Rizwan Salim Badar 0000-0002-3643-0841

Publication Date June 19, 2025
Submission Date July 12, 2024
Acceptance Date February 24, 2025
Published in Issue Year 2025 Volume: 74 Issue: 2

Cite

APA Badar, R. S. (2025). Applications of $q$-Srivastava-Attiya operator on subclasses of analytic functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(2), 254-266. https://doi.org/10.31801/cfsuasmas.1515007
AMA Badar RS. Applications of $q$-Srivastava-Attiya operator on subclasses of analytic functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2025;74(2):254-266. doi:10.31801/cfsuasmas.1515007
Chicago Badar, Rizwan Salim. “Applications of $q$-Srivastava-Attiya Operator on Subclasses of Analytic Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 2 (June 2025): 254-66. https://doi.org/10.31801/cfsuasmas.1515007.
EndNote Badar RS (June 1, 2025) Applications of $q$-Srivastava-Attiya operator on subclasses of analytic functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 2 254–266.
IEEE R. S. Badar, “Applications of $q$-Srivastava-Attiya operator on subclasses of analytic functions”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 2, pp. 254–266, 2025, doi: 10.31801/cfsuasmas.1515007.
ISNAD Badar, Rizwan Salim. “Applications of $q$-Srivastava-Attiya Operator on Subclasses of Analytic Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/2 (June2025), 254-266. https://doi.org/10.31801/cfsuasmas.1515007.
JAMA Badar RS. Applications of $q$-Srivastava-Attiya operator on subclasses of analytic functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:254–266.
MLA Badar, Rizwan Salim. “Applications of $q$-Srivastava-Attiya Operator on Subclasses of Analytic Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 2, 2025, pp. 254-66, doi:10.31801/cfsuasmas.1515007.
Vancouver Badar RS. Applications of $q$-Srivastava-Attiya operator on subclasses of analytic functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(2):254-66.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.