Research Article
BibTex RIS Cite

Local convergence analysis of modified Newton-like method under majorant condition

Year 2025, Volume: 74 Issue: 3, 446 - 459, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1426562

Abstract

This article has devoted to study of local convergence analysis of a modified Newton-like method of order three to approximate a locally unique zero of a non-linear operator in $\mathbb{B}$-space (Banach space). Here, we mainly proved the convergence of the method by using a new type of majorant condition instead of usual majorizing sequences and recurrence relations and provide a computable error bounds. Furthermore, we will establish the relationship between majorant function with special cases like Smale-type and Kantorovich-type functions. A few favorable numerical examples has also provided to show applicability of our analysis.

References

  • Argyros, I. K., Convergence and Application of Newton-Type Iterations, Springer, New York, 2008.
  • Argyros, I. K., Hongmin, R., Ball convergence theorems for Halley’s method in Banach space, J. Appl. Math. Comput., 38 (2012), 453-465.
  • Argyros, I. K., Newton-like methods and non-discrete mathematical induction, Studia Sci. Math. Hungar., 28 (1993), 417-426.
  • Argyros, L. K., Chebysheff-Halley-like methods in Banach spaces, Korean J. Comput. Appl. Math., 4 (1997), 83-107.
  • Chen, M., Lin, R., Wu, Q., Convergence analysis of the modified Newton–HSS method under the H¨older continuous condition, J. Comput. Appl. Math., 264 (2014), 115-130.
  • Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., Salanova, M. A., Chebyshev-like methods and quadratic equations, Rev. Anal. Numér. Théor. Approx., 28 (1999), 23-35 .
  • Gander, W., On Halley’s iteration method, Amer. Math. Monthly, 92 (1985), 131-134.
  • Hernández, M. A., Romero, N., General study of iterative processes of R-order at least three under the weak convergence condition, J. Optim Theory Appl., 133 (2007), 163-177.
  • Hernández, M. A., Romero, N., On a new multiparametric family of Newton-like methods, Appl. Num. Anal. Comp. Math., 2 (2005), 78-88.
  • Hernández, M. A., Romero, N., On a characterization of some Newton-like methods of R-order at least three, J. Comput. Appl. Math., 183 (2005), 53-66.
  • Hernández, M. A., Romero, N., A qualitative analysis of a family of Newton-Like iterative process with R-order of convergence at least three, in: Amat, S., Busquier, S.(Eds.), Advances in Iterative Methods for Nonlinear Equations, SEMA SIMAI Springer Series, Vol 10, Springer, Cham, 2016.
  • Hernández, M. A., Salanova, M. A., Index of convexity and concavity, application to Halley method, Appl. Math. Comput., 103 (1999), 27-49.
  • Kantorovich, L. V., Akilov, G. P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982.
  • Kumari, C., Parida, P. K., Local convergence analysis for Chebyshev’s method, J. Appl. Math. Comput., 59(1–2) (2019), 405–421.
There are 14 citations in total.

Details

Primary Language English
Subjects Numerical Analysis
Journal Section Research Articles
Authors

Chandni Kumari 0000-0002-3845-496X

P. K. Parida 0000-0002-8658-7134

Babita Mehta This is me 0009-0004-7172-9277

Publication Date September 23, 2025
Submission Date January 27, 2024
Acceptance Date April 29, 2025
Published in Issue Year 2025 Volume: 74 Issue: 3

Cite

APA Kumari, C., Parida, P. K., & Mehta, B. (2025). Local convergence analysis of modified Newton-like method under majorant condition. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(3), 446-459. https://doi.org/10.31801/cfsuasmas.1426562
AMA Kumari C, Parida PK, Mehta B. Local convergence analysis of modified Newton-like method under majorant condition. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2025;74(3):446-459. doi:10.31801/cfsuasmas.1426562
Chicago Kumari, Chandni, P. K. Parida, and Babita Mehta. “Local Convergence Analysis of Modified Newton-Like Method under Majorant Condition”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 3 (September 2025): 446-59. https://doi.org/10.31801/cfsuasmas.1426562.
EndNote Kumari C, Parida PK, Mehta B (September 1, 2025) Local convergence analysis of modified Newton-like method under majorant condition. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 3 446–459.
IEEE C. Kumari, P. K. Parida, and B. Mehta, “Local convergence analysis of modified Newton-like method under majorant condition”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 3, pp. 446–459, 2025, doi: 10.31801/cfsuasmas.1426562.
ISNAD Kumari, Chandni et al. “Local Convergence Analysis of Modified Newton-Like Method under Majorant Condition”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/3 (September2025), 446-459. https://doi.org/10.31801/cfsuasmas.1426562.
JAMA Kumari C, Parida PK, Mehta B. Local convergence analysis of modified Newton-like method under majorant condition. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:446–459.
MLA Kumari, Chandni et al. “Local Convergence Analysis of Modified Newton-Like Method under Majorant Condition”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 3, 2025, pp. 446-59, doi:10.31801/cfsuasmas.1426562.
Vancouver Kumari C, Parida PK, Mehta B. Local convergence analysis of modified Newton-like method under majorant condition. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(3):446-59.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.