Local convergence analysis of modified Newton-like method under majorant condition
Year 2025,
Volume: 74 Issue: 3, 446 - 459, 23.09.2025
Chandni Kumari
,
P. K. Parida
,
Babita Mehta
Abstract
This article has devoted to study of local convergence analysis of a modified Newton-like method of order three to approximate a locally unique zero of a non-linear operator in $\mathbb{B}$-space (Banach space). Here, we mainly proved the convergence of the method by using a new type of majorant condition instead of usual majorizing sequences and recurrence relations and provide a computable error bounds. Furthermore, we will establish the relationship between majorant function with special cases like Smale-type and Kantorovich-type functions. A few favorable numerical examples has also provided to show applicability of our analysis.
References
-
Argyros, I. K., Convergence and Application of Newton-Type Iterations, Springer, New York, 2008.
-
Argyros, I. K., Hongmin, R., Ball convergence theorems for Halley’s method in Banach space, J. Appl. Math. Comput., 38 (2012), 453-465.
-
Argyros, I. K., Newton-like methods and non-discrete mathematical induction, Studia Sci. Math. Hungar., 28 (1993), 417-426.
-
Argyros, L. K., Chebysheff-Halley-like methods in Banach spaces, Korean J. Comput. Appl. Math., 4 (1997), 83-107.
-
Chen, M., Lin, R., Wu, Q., Convergence analysis of the modified Newton–HSS method under the H¨older continuous condition, J. Comput. Appl. Math., 264 (2014), 115-130.
-
Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., Salanova, M. A., Chebyshev-like methods and quadratic equations, Rev. Anal. Numér. Théor. Approx., 28 (1999), 23-35 .
-
Gander, W., On Halley’s iteration method, Amer. Math. Monthly, 92 (1985), 131-134.
-
Hernández, M. A., Romero, N., General study of iterative processes of R-order at least three under the weak convergence condition, J. Optim Theory Appl., 133 (2007), 163-177.
-
Hernández, M. A., Romero, N., On a new multiparametric family of Newton-like methods, Appl. Num. Anal. Comp.
Math., 2 (2005), 78-88.
-
Hernández, M. A., Romero, N., On a characterization of some Newton-like methods of R-order at least three, J.
Comput. Appl. Math., 183 (2005), 53-66.
-
Hernández, M. A., Romero, N., A qualitative analysis of a family of Newton-Like iterative process with R-order of
convergence at least three, in: Amat, S., Busquier, S.(Eds.), Advances in Iterative Methods for Nonlinear Equations, SEMA SIMAI Springer Series, Vol 10, Springer, Cham, 2016.
-
Hernández, M. A., Salanova, M. A., Index of convexity and concavity, application to Halley method, Appl. Math. Comput., 103 (1999), 27-49.
-
Kantorovich, L. V., Akilov, G. P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982.
-
Kumari, C., Parida, P. K., Local convergence analysis for Chebyshev’s method, J. Appl. Math. Comput., 59(1–2)
(2019), 405–421.