Research Article
BibTex RIS Cite

Year 2025, Volume: 74 Issue: 3, 355 - 363, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1512521

Abstract

Project Number

--

References

  • Aubin, J. P., Frankowska, H., Differential Inclusions In: Set-Valued Analysis, Modern Birkhäuser Classics, Springer, Boston, 2009.
  • Barbashin, E. A., Conditions for the existence of recurrent trajectories in dynamic systems with a cylindrical phase space, Differ. Uravn., 3(10) (1967), 1627-1633.
  • Boltyanski, V. G., Poznyak, A. S., Time-Optimization Problem. In: The Robust Maximum Principle, Systems and Control: Foundations and Applications, Birkhuser, Boston, MA, 2012.
  • Cernea, A., Frankowska, H., A connection between the maximum principle and dynamic programming for constrained control problems, SIAM J.Control Optim., 44(2) (2005), 673-703. https://doi.org/10.1137/S0363012903430585.
  • Clarke, F. H., Optimization and Nonsmooth Analysis, John Wiley & Sons Inc., New York, 1983.
  • Demir Sağlam, S., Mahmudov, E., Duality problems with second-order polyhedral discrete and differential inclusions, Bull. Iran. Math. Soc., 48(2) (2022), 537-562. https://doi.org/10.1007/s41980-021-00531-9.
  • Demir Sağlam, S., Mahmudov, E., The Lagrange problem for differential inclusions with boundary value conditions and duality, Pacific J. Of Optim., 17(2) (2021), 209-225.
  • Eichmeir, P., Laub, T., Oberpeilsteiner, S., Nachbagauer, K., Steiner, W. The adjoint method for time-optimal control problems, J. Comput. Nonlinear Dynam. 16(2) (2021), 021003-1-12. https://doi.org/10.1115/1.4048808.
  • Filippov, A. F., Classical solutions of differential equations with multi-valued right-hand side, SIAM J. on Control, 5(4) (1967).
  • Gamkrelidze, R. V., Theory of time-optimal processes for linear systems, Izvestia Akad.Nauk, SSSR, 22 (1958), 449-474.
  • Ioffe, A. D., Tikhomirov, V. M., Theory of Extremal Problems, Studies in Mathematics and its Applications 6, North- Holland, Amsterdam - New York, 1979.
  • Kaya, C., Noakes, J., Computational method for time-optimal switching control, J. Optim. Theory Appl., 117 (2003), 69-92. https://doi.org/10.1023/A:1023600422807.
  • Mahmudov, E. N., Approximation and Optimization of Discrete and Differential Inclusions. Elsevier, Boston, USA, 2011.
  • Mahmudov, E. N., Optimization of higher-order differential inclusions with special boundary value conditions, J. Optim. Theory Appl., 192(1) (2022), 36-55. https://doi.org/10.1007/s10957-021-01936-6.
  • Mardanov, M. J., Melikov, T. K., Malik, S. T., Necessary conditions for a minimum in classical calculus of variations in the presence of various types of degenerations, J. Comput. Appl. Math., 418 (2023), 114668. https://doi.org/10.1016/j.cam.2022.114668.
  • Mordukhovich, B. S., Variational Analysis and Generalized Differentiation, Vols.I and II. Springer, Springer-Verlag Berlin Heidelberg, 2006.
  • Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze R. V., Mishchenko, E. F. The Mathematical Theory of Optimal Processes. John Wiley and Sons, Inc., New York: London, Sydney, 1965.
  • Smirnov, G. V., Introduction to the Theory of Differential Inclusions, American Mathematical Society, Providence, Rhode Islands, 2001.
  • Tolstonogov, A., Differential Inclusions in a Banach Space, Part of the book series: Mathematics and Its Applications (MAIA), Volume 524, 2000.
  • Verscheure, D., Demeulenaere, B., Swevers, J., Schutter, J. D., Diehl, M., Time-optimal path tracking for robots: a convex optimization approach, IEEE Transactions on Automatic Control, 54(10) (2009), 2318-2327. https://doi.org/10.1109/TAC.2009.2028959.
  • Wang, G., Wang, L., Xu, Y., Zhang, Y., Time Optimal Control of Evolution Equations, Birkhäuser, 2018.
  • Zaremba, L. S., Existence of value in differential games with fixed time duration, J. Optim. Theory Appl., 38 (1982), 581-598.

Existence results and optimality conditions of time optimal control problem

Year 2025, Volume: 74 Issue: 3, 355 - 363, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1512521

Abstract

The paper is concerned with the existence of theorems and optimality conditions for a time-optimal control problem. The first aim deals with the existence theorem of an optimal solution for a time-optimal control problem in the calculus of variations. We prove the existence theorem utilizing a result on the existence of continuous maps from the space of absolutely continuous functions to the set of solutions to a differential inclusion with Lipschitzian right-hand side. The second goal is to formulate the optimality conditions for the time-optimal minimization problem. We examine necessary optimality conditions which play a significant role in finding candidates to be optimal solutions among all admissible solutions via the normal cones.

Ethical Statement

No

Supporting Institution

No

Project Number

--

Thanks

No

References

  • Aubin, J. P., Frankowska, H., Differential Inclusions In: Set-Valued Analysis, Modern Birkhäuser Classics, Springer, Boston, 2009.
  • Barbashin, E. A., Conditions for the existence of recurrent trajectories in dynamic systems with a cylindrical phase space, Differ. Uravn., 3(10) (1967), 1627-1633.
  • Boltyanski, V. G., Poznyak, A. S., Time-Optimization Problem. In: The Robust Maximum Principle, Systems and Control: Foundations and Applications, Birkhuser, Boston, MA, 2012.
  • Cernea, A., Frankowska, H., A connection between the maximum principle and dynamic programming for constrained control problems, SIAM J.Control Optim., 44(2) (2005), 673-703. https://doi.org/10.1137/S0363012903430585.
  • Clarke, F. H., Optimization and Nonsmooth Analysis, John Wiley & Sons Inc., New York, 1983.
  • Demir Sağlam, S., Mahmudov, E., Duality problems with second-order polyhedral discrete and differential inclusions, Bull. Iran. Math. Soc., 48(2) (2022), 537-562. https://doi.org/10.1007/s41980-021-00531-9.
  • Demir Sağlam, S., Mahmudov, E., The Lagrange problem for differential inclusions with boundary value conditions and duality, Pacific J. Of Optim., 17(2) (2021), 209-225.
  • Eichmeir, P., Laub, T., Oberpeilsteiner, S., Nachbagauer, K., Steiner, W. The adjoint method for time-optimal control problems, J. Comput. Nonlinear Dynam. 16(2) (2021), 021003-1-12. https://doi.org/10.1115/1.4048808.
  • Filippov, A. F., Classical solutions of differential equations with multi-valued right-hand side, SIAM J. on Control, 5(4) (1967).
  • Gamkrelidze, R. V., Theory of time-optimal processes for linear systems, Izvestia Akad.Nauk, SSSR, 22 (1958), 449-474.
  • Ioffe, A. D., Tikhomirov, V. M., Theory of Extremal Problems, Studies in Mathematics and its Applications 6, North- Holland, Amsterdam - New York, 1979.
  • Kaya, C., Noakes, J., Computational method for time-optimal switching control, J. Optim. Theory Appl., 117 (2003), 69-92. https://doi.org/10.1023/A:1023600422807.
  • Mahmudov, E. N., Approximation and Optimization of Discrete and Differential Inclusions. Elsevier, Boston, USA, 2011.
  • Mahmudov, E. N., Optimization of higher-order differential inclusions with special boundary value conditions, J. Optim. Theory Appl., 192(1) (2022), 36-55. https://doi.org/10.1007/s10957-021-01936-6.
  • Mardanov, M. J., Melikov, T. K., Malik, S. T., Necessary conditions for a minimum in classical calculus of variations in the presence of various types of degenerations, J. Comput. Appl. Math., 418 (2023), 114668. https://doi.org/10.1016/j.cam.2022.114668.
  • Mordukhovich, B. S., Variational Analysis and Generalized Differentiation, Vols.I and II. Springer, Springer-Verlag Berlin Heidelberg, 2006.
  • Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze R. V., Mishchenko, E. F. The Mathematical Theory of Optimal Processes. John Wiley and Sons, Inc., New York: London, Sydney, 1965.
  • Smirnov, G. V., Introduction to the Theory of Differential Inclusions, American Mathematical Society, Providence, Rhode Islands, 2001.
  • Tolstonogov, A., Differential Inclusions in a Banach Space, Part of the book series: Mathematics and Its Applications (MAIA), Volume 524, 2000.
  • Verscheure, D., Demeulenaere, B., Swevers, J., Schutter, J. D., Diehl, M., Time-optimal path tracking for robots: a convex optimization approach, IEEE Transactions on Automatic Control, 54(10) (2009), 2318-2327. https://doi.org/10.1109/TAC.2009.2028959.
  • Wang, G., Wang, L., Xu, Y., Zhang, Y., Time Optimal Control of Evolution Equations, Birkhäuser, 2018.
  • Zaremba, L. S., Existence of value in differential games with fixed time duration, J. Optim. Theory Appl., 38 (1982), 581-598.
There are 22 citations in total.

Details

Primary Language English
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems, Calculus of Variations, Mathematical Aspects of Systems Theory and Control Theory
Journal Section Research Articles
Authors

Sevilay Demir Sağlam 0000-0003-4615-6863

Project Number --
Publication Date September 23, 2025
Submission Date July 9, 2024
Acceptance Date April 22, 2025
Published in Issue Year 2025 Volume: 74 Issue: 3

Cite

APA Demir Sağlam, S. (2025). Existence results and optimality conditions of time optimal control problem. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(3), 355-363. https://doi.org/10.31801/cfsuasmas.1512521
AMA Demir Sağlam S. Existence results and optimality conditions of time optimal control problem. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2025;74(3):355-363. doi:10.31801/cfsuasmas.1512521
Chicago Demir Sağlam, Sevilay. “Existence Results and Optimality Conditions of Time Optimal Control Problem”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 3 (September 2025): 355-63. https://doi.org/10.31801/cfsuasmas.1512521.
EndNote Demir Sağlam S (September 1, 2025) Existence results and optimality conditions of time optimal control problem. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 3 355–363.
IEEE S. Demir Sağlam, “Existence results and optimality conditions of time optimal control problem”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 3, pp. 355–363, 2025, doi: 10.31801/cfsuasmas.1512521.
ISNAD Demir Sağlam, Sevilay. “Existence Results and Optimality Conditions of Time Optimal Control Problem”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/3 (September2025), 355-363. https://doi.org/10.31801/cfsuasmas.1512521.
JAMA Demir Sağlam S. Existence results and optimality conditions of time optimal control problem. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:355–363.
MLA Demir Sağlam, Sevilay. “Existence Results and Optimality Conditions of Time Optimal Control Problem”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 3, 2025, pp. 355-63, doi:10.31801/cfsuasmas.1512521.
Vancouver Demir Sağlam S. Existence results and optimality conditions of time optimal control problem. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(3):355-63.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.