Research Article
BibTex RIS Cite

Year 2025, Volume: 74 Issue: 3, 492 - 502, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1517305

Abstract

References

  • Büyükkeçeci, M., Okur, M. C., A comprehensive review of feature selection and feature selection stability in machine learning, Gazi Univ. J. Sci., 36 (4) (2023), 1506–1520, https://dx.doi.org/10.35378/gujs.993763.
  • Chang, Y., Li, Y., Ding, A., Dy, J., A robust-equitable copula dependence measure for feature selection, In Artificial Intelligence and Statistics (2016), IEEE, pp. 84–92.
  • Chen, R. C., Dewi, C., Huang, S. W., Caraka, R. E., Selecting critical features for data classification based on machine learning methods, J. Big Data, 7 (1) (2020), 52, https://dx.doi.org/10.1186/s40537-020-00327-4.
  • Chen, Y., A copula-based supervised learning classification for continuous and discrete data, J. Data Sci., 14 (4) (2016), 769–782.
  • Di Lascio, F. M. L., Coclust: An r package for copula-based cluster analysis, In Recent Applications in Data Clustering, BoD–Books on Demand, 2018, p. 93, https://dx.doi.org/10.5772/intechopen.74865.
  • Di Lascio, F. M. L., Disegna, M., A copula-based clustering algorithm to analyse eu country diets, Knowl.-Based Syst., 132 (2017), 72–84, https://dx.doi.org/10.1016/j.knosys.2017.06.004.
  • Dong, H., Xu, X., Sui, H., Xu, F., Liu, J., Copula-based joint statistical model for polarimetric features and its application in polsar image classification, IEEE Trans. Geosci. Remote Sens., 55(10) (2017), 5777–5789, https://dx.doi.org/10.1109/TGRS.2017.2714169.
  • Dong, K., Zhao, H., Tong, T., Wan, X., Nblda: Negative binomial linear discriminant analysis for rna-seq data, BMC Bioinform., 17 (1) (2016), 369, https://dx.doi.org/10.1186/s12859-016-1208-1.
  • Durante, F., Sempi, C., Principles of Copula Theory, CRC press, 2015.
  • Elidan, G., Copula network classifiers (cncs), In Artificial intelligence and statistics (2012), PMLR, pp. 346–354.
  • Fathi, H., AlSalman, H., Gumaei, A., Manhrawy, I. I. M., Hussien, A. G., El-Kafrawy, P., et al., An efficient cancer classification model using microarray and high-dimensional data, Comput. Intell. Neurosci., 2021 (2021), https://dx.doi.org/10.1155/2021/7231126.
  • Goksuluk, D., Zararsiz, G., Korkmaz, S., Eldem, V., Erturk Zararsiz, G., Ozcetin, E., Ozturk, A., Karaagaoglu, A. E., Mlseq: Machine learning interface for rna-sequencing data, Comput. Methods Programs Biomed., 175 (2019), 223–231, https://dx.doi.org/10.1016/j.cmpb.2019.04.007.
  • Hammami, N., Bedda, M., Nadir, F., Probabilistic classification based on copula for speech recognitation: an overview, In 2013 International Conference on Computer Applications Technology (ICCAT) (2013), IEEE, pp. 1–3.
  • Han, F., Zhao, T., Liu, H., Coda: High dimensional copula discriminant analysis, J. Mach. Learn. Res., 14 (2013), 629–671.
  • Hazra, S., Shaw, A. K., Das, P., Ghosh, A., Gene co expression analysis for identifying some regulatory genes in human lung cancer, In 2022 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON) (2022), pp. 221–225, https://dx.doi.org/10.1109/EDKCON56221.2022.10032946.
  • Houari, R., Bounceur, A., Kechadi, M.-T., Tari, A.-K., Euler, R., Dimensionality reduction in data mining: A copula approach, Expert Syst. Appl., 64 (2016), 247–260, https://dx.doi.org/10.1016/j.eswa.2016.07.041.
  • Hu, J., Pan, K., Song, Y., Wei, G., Shen, C., An improved feature selection method for classification on incomplete data: Non-negative latent factor-incorporated duplicate mic, Expert Syst. Appl., 212 (2023), 118654, https://dx.doi.org/10.1016/j.eswa.2022.118654.
  • Jabeen, A., Ahmad, N., Raza, K., Machine Learning-Based State-of-the-Art Methods for the Classification of RNA-Seq Data, Springer International Publishing, Cham, 2018, pp. 133–172, https://dx.doi.org/10.1007/978-3-319-65981-7-6.
  • Jajuga, K., Papla, D., Copula functions in model based clustering, In From Data and Information Analysis to Knowledge Engineering, Springer, 2006, pp. 606–613.
  • Karine, A., Toumi, A., Khenchaf, A., Hassouni, M. E., Multivariate copula statistical model and weighted sparse classification for radar image target recognition, Comput. Electr. Eng., 84 (2020), 106633, https://dx.doi.org/10.1016/j.compeleceng.2020.106633.
  • Khan, Y. A., Shan, Q. S., Liu, Q., Abbas, S. Z., A nonparametric copula-based decision tree for two random variables using mic as a classification index, Soft Comput., 25 (15) (2021), 9677–9692, https://dx.doi.org/10.1007/s00500-020-05399-1.
  • Klüppelberg, C., Kuhn, G., Copula structure analysis, J. R. Stat. Soc. Ser. B Stat. Methodol., 71(3) (2009), 737–753, https://dx.doi.org/10.1111/j.1467-9868.2009.00707.x.
  • Kochan, N., Tütüncü, G. Y., Giner, G., A new local covariance matrix estimation for the classification of gene expression profiles in high dimensional rna-seq data, Expert Syst. Appl., 167 (2021), 114200, https://dx.doi.org/10.1016/j.eswa.2020.114200.
  • Kochan, N., Tutuncu, G. Y., Smyth, G. K., Gandolfo, C. L., Giner, G., qtqda: quantile transformed quadratic discriminant analysis for high-dimensional rna-seq data, PeerJ, 7 (2019), e8260, https://dx.doi.org/10.7717/peerj.8260.
  • Kuiry, S., Das, N., Das, A., Nasipuri, M., Edc3: Ensemble of deep-classifiers using class-specific copula functions to improve semantic image segmentation, arXiv preprint arXiv:2003.05710 (2020), https://dx.doi.org/10.48550/arXiv.2003.05710.
  • Lall, S., Sinha, D., Ghosh, A., Sengupta, D., Bandyopadhyay, S., Stable feature selection using copula-based mutual information, Pattern Recognit., 107 (2020), 107697, https://dx.doi.org/10.1016/j.patcog.2020.107697.
  • Lall, S., Sinha, D., Ghosh, A., Sengupta, D., Bandyopadhyay, S., Stable feature selection using copula based mutual information, Pattern Recognit., 112 (2021), 107697, https://dx.doi.org/10.1016/j.patcog.2020.107697.
  • Law, C. W., Chen, Y., Shi, W., Smyth, G. K., voom: precision weights unlock linear model analysis tools for rna-seq read counts, Genome Biol., 15 (2) (2014), R29, https://dx.doi.org/10.1186/gb-2014-15-2-r29.
  • Lopes, M. B., Casimiro, S., Vinga, S., Twiner: correlation-based regularization for identifying common cancer gene signatures, BMC Bioinform., 20 (1) (2019), 356, https://dx.doi.org/10.1186/s12859-019-2937-8.
  • Mesiar, R., Kolesárová, A., Sheikhi, A., Convex concordance measures, Fuzzy Sets Syst., 441 (2022), 366–377, https://dx.doi.org/10.1016/j.fss.2022.01.001.
  • Mesiar, R., Sheikhi, A., Nonlinear random forest classification, a copula-based approach, Appl. Sci., 11 (15) (2021), 7140, https://dx.doi.org/10.3390/app11157140.
  • Mortazavi, A., Williams, B., McCue, K., Schaeffer, L., Wold, B., Mapping and quantifying mammalian transcriptomes by rna-seq, Nat. Methods, 5 (2008), 621–628, https://dx.doi.org/10.1038/nmeth.1226.
  • Mowlaei, M. E., Shi, X., Fsf-ga: A feature selection framework for phenotype prediction using genetic algorithms, Genes (Basel), 14 (5) (2023), 1059, https://dx.doi.org/10.3390/genes14051059.
  • Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., Snyder, M., The transcriptional landscape of the yeast genome defined by rna sequencing., Science, 320 (5881) (2008), 1344–1349, https://dx.doi.org/10.1126/science.1158441.
  • Nelsen, R. B., An introduction to copulas, Springer Science & Business Media, 2006.
  • Ozdemir, O., Allen, T. G., Choi, S., Wimalajeewa, T., Varshney, P. K., Copula-based classifier fusion under statistical dependence, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(11) (2017), 2740–2748, https://dx.doi.org/10.1109/TPAMI.2017.2774300.
  • Robinson, M. D., McCarthy, D. J., Smyth, G. K., edger: a bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 26(1) (2009), 139–140, https://dx.doi.org/10.1093/bioinformatics/btp616.
  • Salinas-Gutiérrez, R., Hernández-Aguirre, A., Rivera-Meraz, M. J. J., Villa-Diharce, E. R., Supervised probabilistic classification based on gaussian copulas, In Mexican International Conference on Artificial Intelligence (2010), Springer, pp. 104–115.
  • Salinas-Gutiérrez, R., Hernández-Aguirre, A., Rivera-Meraz, M. J. J., Villa-Diharce, E. R., Using gaussian copulas in supervised probabilistic classification, In Soft Computing for Intelligent Control and Mobile Robotics, Springer, 2010, pp. 355–372.
  • Sheikhi, A., Mesiar, R., Holeňa, M., A dimension reduction in neural network using copula matrix, Int. J. Gen. Syst., 51 (5) (2022), 1–16, https://dx.doi.org/10.1080/03081079.2022.2108029.
  • Si, Y., Liu, P., Li, P., Brutnell, T., Model-based clustering of rna-seq data, Bioinformatics, 30(2) (2014), 197–205, https://dx.doi.org/10.1093/bioinformatics/btt632.
  • Sklar, M., Fonctions de repartition an dimensions et leurs marges, Publ. Inst. Stat. Univ. Paris, 8 (1959), 229–231.
  • Sonmez, O. S., Dagtekin, M., Ensari, T., Gene expression data classification using genetic algorithm-based feature selection, Turk. J. Electr. Eng. Comput. Sci., 29 (7) (2021), https://dx.doi.org/10.3906/elk-2102-110.
  • Sun, J., Zhao, H., The application of sparse estimation of covariance matrix to quadratic discriminant analysis, BMC Bioinform., 16 (1) (2015), 48, https://dx.doi.org/10.1186/s12859-014-0443-6.
  • Tan, K. M., Petersen, A., Witten, D., Classification of RNA-seq Data, Springer International Publishing, Cham, 2014, pp. 219–246, https://dx.doi.org/10.1007/978-3-319-07212-8-11.
  • Voisin, A., Krylov, V. A., Moser, G., Serpico, S. B., Zerubia, J., Supervised classification of multisensor and multiresolution remote sensing images with a hierarchical copula-based approach, IEEE Trans. Geosci. Remote Sens., 52 (6) (2013), 3346–3358, https://dx.doi.org/10.1109/TGRS.2013.2272581.
  • Witten, D., Tibshirani, R., Gu, S. G., et al., Ultra-high throughput sequencing-based small rna discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls, BMC Biol., 8 (2010), 58, https://dx.doi.org/10.1186/1741-7007-8-58.
  • Witten, D. M., Classification and clustering of sequencing data using a poisson model, Ann. Appl. Stat., 5 (4) (2011), 2493–2518, https://dx.doi.org/10.1214/11-AOAS493.
  • Zararsiz, G., Goksuluk, D., Klaus, B., Korkmaz, S., Eldem, V., Karabulut, E., Ozturk, A., voomdda: Discovery of diagnostic biomarkers and classification of rna-seq data, PeerJ, 5 (2017), e3890, https://dx.doi.org/10.7717/peerj.3890.
  • Zhang, Q., Classification of rna-seq data via gaussian copulas, Stat, 6 (1) (2017), 171–183, https://dx.doi.org/10.1002/sta4.144.
  • Zhang, Y., Wang, X., Liu, D., Li, C., Liu, Q., Cai, Y., Yi, Y., Yang, Z., Joint probability-based classifier based on vine copula method for land use classification of multispectral remote sensing data, Earth Sci. Inform., 13 (4) (2020), 1079–1092, https://dx.doi.org/10.1007/s12145-020-00487-0.

A copula-based classification using agglomerated feature selection_extraction: an application in cervical cancer diagnostic

Year 2025, Volume: 74 Issue: 3, 492 - 502, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1517305

Abstract

The use of gene-expression datasets has significantly enhanced our understanding of complex diseases such as cancer. The importance of the relationship between genes in analyzing such datasets has been highlighted, indicating their crucial role in diagnosing the disease accurately. In this study, we investigate the associated copulas between attributes to extract fundamental block-related components. Subsequently, we perform a classification algorithm based on these components to classify a labeled target variable. Specifically, examining the practical implications and effectiveness of our approach in real-world scenarios, we provide a novel illustrative application in cervical cancer classification.

References

  • Büyükkeçeci, M., Okur, M. C., A comprehensive review of feature selection and feature selection stability in machine learning, Gazi Univ. J. Sci., 36 (4) (2023), 1506–1520, https://dx.doi.org/10.35378/gujs.993763.
  • Chang, Y., Li, Y., Ding, A., Dy, J., A robust-equitable copula dependence measure for feature selection, In Artificial Intelligence and Statistics (2016), IEEE, pp. 84–92.
  • Chen, R. C., Dewi, C., Huang, S. W., Caraka, R. E., Selecting critical features for data classification based on machine learning methods, J. Big Data, 7 (1) (2020), 52, https://dx.doi.org/10.1186/s40537-020-00327-4.
  • Chen, Y., A copula-based supervised learning classification for continuous and discrete data, J. Data Sci., 14 (4) (2016), 769–782.
  • Di Lascio, F. M. L., Coclust: An r package for copula-based cluster analysis, In Recent Applications in Data Clustering, BoD–Books on Demand, 2018, p. 93, https://dx.doi.org/10.5772/intechopen.74865.
  • Di Lascio, F. M. L., Disegna, M., A copula-based clustering algorithm to analyse eu country diets, Knowl.-Based Syst., 132 (2017), 72–84, https://dx.doi.org/10.1016/j.knosys.2017.06.004.
  • Dong, H., Xu, X., Sui, H., Xu, F., Liu, J., Copula-based joint statistical model for polarimetric features and its application in polsar image classification, IEEE Trans. Geosci. Remote Sens., 55(10) (2017), 5777–5789, https://dx.doi.org/10.1109/TGRS.2017.2714169.
  • Dong, K., Zhao, H., Tong, T., Wan, X., Nblda: Negative binomial linear discriminant analysis for rna-seq data, BMC Bioinform., 17 (1) (2016), 369, https://dx.doi.org/10.1186/s12859-016-1208-1.
  • Durante, F., Sempi, C., Principles of Copula Theory, CRC press, 2015.
  • Elidan, G., Copula network classifiers (cncs), In Artificial intelligence and statistics (2012), PMLR, pp. 346–354.
  • Fathi, H., AlSalman, H., Gumaei, A., Manhrawy, I. I. M., Hussien, A. G., El-Kafrawy, P., et al., An efficient cancer classification model using microarray and high-dimensional data, Comput. Intell. Neurosci., 2021 (2021), https://dx.doi.org/10.1155/2021/7231126.
  • Goksuluk, D., Zararsiz, G., Korkmaz, S., Eldem, V., Erturk Zararsiz, G., Ozcetin, E., Ozturk, A., Karaagaoglu, A. E., Mlseq: Machine learning interface for rna-sequencing data, Comput. Methods Programs Biomed., 175 (2019), 223–231, https://dx.doi.org/10.1016/j.cmpb.2019.04.007.
  • Hammami, N., Bedda, M., Nadir, F., Probabilistic classification based on copula for speech recognitation: an overview, In 2013 International Conference on Computer Applications Technology (ICCAT) (2013), IEEE, pp. 1–3.
  • Han, F., Zhao, T., Liu, H., Coda: High dimensional copula discriminant analysis, J. Mach. Learn. Res., 14 (2013), 629–671.
  • Hazra, S., Shaw, A. K., Das, P., Ghosh, A., Gene co expression analysis for identifying some regulatory genes in human lung cancer, In 2022 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON) (2022), pp. 221–225, https://dx.doi.org/10.1109/EDKCON56221.2022.10032946.
  • Houari, R., Bounceur, A., Kechadi, M.-T., Tari, A.-K., Euler, R., Dimensionality reduction in data mining: A copula approach, Expert Syst. Appl., 64 (2016), 247–260, https://dx.doi.org/10.1016/j.eswa.2016.07.041.
  • Hu, J., Pan, K., Song, Y., Wei, G., Shen, C., An improved feature selection method for classification on incomplete data: Non-negative latent factor-incorporated duplicate mic, Expert Syst. Appl., 212 (2023), 118654, https://dx.doi.org/10.1016/j.eswa.2022.118654.
  • Jabeen, A., Ahmad, N., Raza, K., Machine Learning-Based State-of-the-Art Methods for the Classification of RNA-Seq Data, Springer International Publishing, Cham, 2018, pp. 133–172, https://dx.doi.org/10.1007/978-3-319-65981-7-6.
  • Jajuga, K., Papla, D., Copula functions in model based clustering, In From Data and Information Analysis to Knowledge Engineering, Springer, 2006, pp. 606–613.
  • Karine, A., Toumi, A., Khenchaf, A., Hassouni, M. E., Multivariate copula statistical model and weighted sparse classification for radar image target recognition, Comput. Electr. Eng., 84 (2020), 106633, https://dx.doi.org/10.1016/j.compeleceng.2020.106633.
  • Khan, Y. A., Shan, Q. S., Liu, Q., Abbas, S. Z., A nonparametric copula-based decision tree for two random variables using mic as a classification index, Soft Comput., 25 (15) (2021), 9677–9692, https://dx.doi.org/10.1007/s00500-020-05399-1.
  • Klüppelberg, C., Kuhn, G., Copula structure analysis, J. R. Stat. Soc. Ser. B Stat. Methodol., 71(3) (2009), 737–753, https://dx.doi.org/10.1111/j.1467-9868.2009.00707.x.
  • Kochan, N., Tütüncü, G. Y., Giner, G., A new local covariance matrix estimation for the classification of gene expression profiles in high dimensional rna-seq data, Expert Syst. Appl., 167 (2021), 114200, https://dx.doi.org/10.1016/j.eswa.2020.114200.
  • Kochan, N., Tutuncu, G. Y., Smyth, G. K., Gandolfo, C. L., Giner, G., qtqda: quantile transformed quadratic discriminant analysis for high-dimensional rna-seq data, PeerJ, 7 (2019), e8260, https://dx.doi.org/10.7717/peerj.8260.
  • Kuiry, S., Das, N., Das, A., Nasipuri, M., Edc3: Ensemble of deep-classifiers using class-specific copula functions to improve semantic image segmentation, arXiv preprint arXiv:2003.05710 (2020), https://dx.doi.org/10.48550/arXiv.2003.05710.
  • Lall, S., Sinha, D., Ghosh, A., Sengupta, D., Bandyopadhyay, S., Stable feature selection using copula-based mutual information, Pattern Recognit., 107 (2020), 107697, https://dx.doi.org/10.1016/j.patcog.2020.107697.
  • Lall, S., Sinha, D., Ghosh, A., Sengupta, D., Bandyopadhyay, S., Stable feature selection using copula based mutual information, Pattern Recognit., 112 (2021), 107697, https://dx.doi.org/10.1016/j.patcog.2020.107697.
  • Law, C. W., Chen, Y., Shi, W., Smyth, G. K., voom: precision weights unlock linear model analysis tools for rna-seq read counts, Genome Biol., 15 (2) (2014), R29, https://dx.doi.org/10.1186/gb-2014-15-2-r29.
  • Lopes, M. B., Casimiro, S., Vinga, S., Twiner: correlation-based regularization for identifying common cancer gene signatures, BMC Bioinform., 20 (1) (2019), 356, https://dx.doi.org/10.1186/s12859-019-2937-8.
  • Mesiar, R., Kolesárová, A., Sheikhi, A., Convex concordance measures, Fuzzy Sets Syst., 441 (2022), 366–377, https://dx.doi.org/10.1016/j.fss.2022.01.001.
  • Mesiar, R., Sheikhi, A., Nonlinear random forest classification, a copula-based approach, Appl. Sci., 11 (15) (2021), 7140, https://dx.doi.org/10.3390/app11157140.
  • Mortazavi, A., Williams, B., McCue, K., Schaeffer, L., Wold, B., Mapping and quantifying mammalian transcriptomes by rna-seq, Nat. Methods, 5 (2008), 621–628, https://dx.doi.org/10.1038/nmeth.1226.
  • Mowlaei, M. E., Shi, X., Fsf-ga: A feature selection framework for phenotype prediction using genetic algorithms, Genes (Basel), 14 (5) (2023), 1059, https://dx.doi.org/10.3390/genes14051059.
  • Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., Snyder, M., The transcriptional landscape of the yeast genome defined by rna sequencing., Science, 320 (5881) (2008), 1344–1349, https://dx.doi.org/10.1126/science.1158441.
  • Nelsen, R. B., An introduction to copulas, Springer Science & Business Media, 2006.
  • Ozdemir, O., Allen, T. G., Choi, S., Wimalajeewa, T., Varshney, P. K., Copula-based classifier fusion under statistical dependence, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(11) (2017), 2740–2748, https://dx.doi.org/10.1109/TPAMI.2017.2774300.
  • Robinson, M. D., McCarthy, D. J., Smyth, G. K., edger: a bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 26(1) (2009), 139–140, https://dx.doi.org/10.1093/bioinformatics/btp616.
  • Salinas-Gutiérrez, R., Hernández-Aguirre, A., Rivera-Meraz, M. J. J., Villa-Diharce, E. R., Supervised probabilistic classification based on gaussian copulas, In Mexican International Conference on Artificial Intelligence (2010), Springer, pp. 104–115.
  • Salinas-Gutiérrez, R., Hernández-Aguirre, A., Rivera-Meraz, M. J. J., Villa-Diharce, E. R., Using gaussian copulas in supervised probabilistic classification, In Soft Computing for Intelligent Control and Mobile Robotics, Springer, 2010, pp. 355–372.
  • Sheikhi, A., Mesiar, R., Holeňa, M., A dimension reduction in neural network using copula matrix, Int. J. Gen. Syst., 51 (5) (2022), 1–16, https://dx.doi.org/10.1080/03081079.2022.2108029.
  • Si, Y., Liu, P., Li, P., Brutnell, T., Model-based clustering of rna-seq data, Bioinformatics, 30(2) (2014), 197–205, https://dx.doi.org/10.1093/bioinformatics/btt632.
  • Sklar, M., Fonctions de repartition an dimensions et leurs marges, Publ. Inst. Stat. Univ. Paris, 8 (1959), 229–231.
  • Sonmez, O. S., Dagtekin, M., Ensari, T., Gene expression data classification using genetic algorithm-based feature selection, Turk. J. Electr. Eng. Comput. Sci., 29 (7) (2021), https://dx.doi.org/10.3906/elk-2102-110.
  • Sun, J., Zhao, H., The application of sparse estimation of covariance matrix to quadratic discriminant analysis, BMC Bioinform., 16 (1) (2015), 48, https://dx.doi.org/10.1186/s12859-014-0443-6.
  • Tan, K. M., Petersen, A., Witten, D., Classification of RNA-seq Data, Springer International Publishing, Cham, 2014, pp. 219–246, https://dx.doi.org/10.1007/978-3-319-07212-8-11.
  • Voisin, A., Krylov, V. A., Moser, G., Serpico, S. B., Zerubia, J., Supervised classification of multisensor and multiresolution remote sensing images with a hierarchical copula-based approach, IEEE Trans. Geosci. Remote Sens., 52 (6) (2013), 3346–3358, https://dx.doi.org/10.1109/TGRS.2013.2272581.
  • Witten, D., Tibshirani, R., Gu, S. G., et al., Ultra-high throughput sequencing-based small rna discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls, BMC Biol., 8 (2010), 58, https://dx.doi.org/10.1186/1741-7007-8-58.
  • Witten, D. M., Classification and clustering of sequencing data using a poisson model, Ann. Appl. Stat., 5 (4) (2011), 2493–2518, https://dx.doi.org/10.1214/11-AOAS493.
  • Zararsiz, G., Goksuluk, D., Klaus, B., Korkmaz, S., Eldem, V., Karabulut, E., Ozturk, A., voomdda: Discovery of diagnostic biomarkers and classification of rna-seq data, PeerJ, 5 (2017), e3890, https://dx.doi.org/10.7717/peerj.3890.
  • Zhang, Q., Classification of rna-seq data via gaussian copulas, Stat, 6 (1) (2017), 171–183, https://dx.doi.org/10.1002/sta4.144.
  • Zhang, Y., Wang, X., Liu, D., Li, C., Liu, Q., Cai, Y., Yi, Y., Yang, Z., Joint probability-based classifier based on vine copula method for land use classification of multispectral remote sensing data, Earth Sci. Inform., 13 (4) (2020), 1079–1092, https://dx.doi.org/10.1007/s12145-020-00487-0.
There are 51 citations in total.

Details

Primary Language English
Subjects Biostatistics, Computational Statistics
Journal Section Research Articles
Authors

Necla Koçhan 0000-0003-2355-4826

Ayyub Sheikhi 0000-0002-3731-6012

Publication Date September 23, 2025
Submission Date July 17, 2024
Acceptance Date March 19, 2025
Published in Issue Year 2025 Volume: 74 Issue: 3

Cite

APA Koçhan, N., & Sheikhi, A. (2025). A copula-based classification using agglomerated feature selection_extraction: an application in cervical cancer diagnostic. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(3), 492-502. https://doi.org/10.31801/cfsuasmas.1517305
AMA Koçhan N, Sheikhi A. A copula-based classification using agglomerated feature selection_extraction: an application in cervical cancer diagnostic. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2025;74(3):492-502. doi:10.31801/cfsuasmas.1517305
Chicago Koçhan, Necla, and Ayyub Sheikhi. “A Copula-Based Classification Using Agglomerated Feature Selection_extraction: An Application in Cervical Cancer Diagnostic”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 3 (September 2025): 492-502. https://doi.org/10.31801/cfsuasmas.1517305.
EndNote Koçhan N, Sheikhi A (September 1, 2025) A copula-based classification using agglomerated feature selection_extraction: an application in cervical cancer diagnostic. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 3 492–502.
IEEE N. Koçhan and A. Sheikhi, “A copula-based classification using agglomerated feature selection_extraction: an application in cervical cancer diagnostic”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 3, pp. 492–502, 2025, doi: 10.31801/cfsuasmas.1517305.
ISNAD Koçhan, Necla - Sheikhi, Ayyub. “A Copula-Based Classification Using Agglomerated Feature Selection_extraction: An Application in Cervical Cancer Diagnostic”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/3 (September2025), 492-502. https://doi.org/10.31801/cfsuasmas.1517305.
JAMA Koçhan N, Sheikhi A. A copula-based classification using agglomerated feature selection_extraction: an application in cervical cancer diagnostic. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:492–502.
MLA Koçhan, Necla and Ayyub Sheikhi. “A Copula-Based Classification Using Agglomerated Feature Selection_extraction: An Application in Cervical Cancer Diagnostic”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 3, 2025, pp. 492-0, doi:10.31801/cfsuasmas.1517305.
Vancouver Koçhan N, Sheikhi A. A copula-based classification using agglomerated feature selection_extraction: an application in cervical cancer diagnostic. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(3):492-50.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.