Research Article
BibTex RIS Cite

Year 2025, Volume: 74 Issue: 3, 364 - 374, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1521845

Abstract

References

  • Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
  • Caratheodory, C., Uber der Variabilitatsbereich der Fourier’schem Konstanten won positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo, 32 (1911), 193-217.
  • Fejer, L., Riesz, F., Über einige funktionentheoretische Ungleichungen, Math. Z., 11 (1921), 305-314.
  • Gwynme, E., The Poisson integral formula and representation of SU(1,1), Rose-Hulman Undergraduate Math. J., 12 (2011), 1-20.
  • Hallenbeck, D. J., Ruscheweyh S., Subordination by convex functions, Proc. Amer. Math. Soc., 52 (1975), 191-195.
  • Miller, S. S., Mocanu, P. T., Differential Subordinations, Theory and Applications, Series on Monographs and Textbook in Pure and Applied Mathematics, No. 225, Marcel Dekker, New York and Basel, 2000.
  • Suffridge, T. J., Some remarks on convex maps of the unit disk, Duke Math. J., 37 (1970), 775-777.
  • Tsuji, M., Complex Function Theory, Tokyo, Japanese, Maki Book Comp., 1968.

Generalization properties of Bernardi integral operator

Year 2025, Volume: 74 Issue: 3, 364 - 374, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1521845

Abstract

Let $A\left( n\right)$ be the class of analytic functions $f\left(z\right)$ of the form
\begin{equation*}
f\left( z\right) =z+\sum_{k=n}^{\infty }a_{k}z^{k},\;\;\left(
n=2,3,4,...\right)
\end{equation*}
in the open unit disk $U.$ We introduce the integral operator $B_{j}f\left(
z\right) $$=B\left( B_{j-1}f\left( z\right) \right) $, $B_{1}f\left(
z\right) =Bf\left( z\right)$ and $B_{0}f\left( z\right) =f\left( z\right) $. In the present paper, we define the subclass $M_{j}\left( n,\gamma ,\alpha
\right) $ and discuss some interesting properties of $f\left( z\right) \in
A\left( n\right)$ concerning with the class $M_{j}\left( n,\gamma ,\alpha
\right) .$

References

  • Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
  • Caratheodory, C., Uber der Variabilitatsbereich der Fourier’schem Konstanten won positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo, 32 (1911), 193-217.
  • Fejer, L., Riesz, F., Über einige funktionentheoretische Ungleichungen, Math. Z., 11 (1921), 305-314.
  • Gwynme, E., The Poisson integral formula and representation of SU(1,1), Rose-Hulman Undergraduate Math. J., 12 (2011), 1-20.
  • Hallenbeck, D. J., Ruscheweyh S., Subordination by convex functions, Proc. Amer. Math. Soc., 52 (1975), 191-195.
  • Miller, S. S., Mocanu, P. T., Differential Subordinations, Theory and Applications, Series on Monographs and Textbook in Pure and Applied Mathematics, No. 225, Marcel Dekker, New York and Basel, 2000.
  • Suffridge, T. J., Some remarks on convex maps of the unit disk, Duke Math. J., 37 (1970), 775-777.
  • Tsuji, M., Complex Function Theory, Tokyo, Japanese, Maki Book Comp., 1968.
There are 8 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Research Articles
Authors

Muhammet Kamali 0000-0002-6230-6836

Hatun Özlem Guney 0000-0002-3010-7795

Shigeyoshi Owa 0000-0002-8842-2464

Publication Date September 23, 2025
Submission Date July 24, 2024
Acceptance Date March 31, 2025
Published in Issue Year 2025 Volume: 74 Issue: 3

Cite

APA Kamali, M., Guney, H. Ö., & Owa, S. (2025). Generalization properties of Bernardi integral operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(3), 364-374. https://doi.org/10.31801/cfsuasmas.1521845
AMA Kamali M, Guney HÖ, Owa S. Generalization properties of Bernardi integral operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2025;74(3):364-374. doi:10.31801/cfsuasmas.1521845
Chicago Kamali, Muhammet, Hatun Özlem Guney, and Shigeyoshi Owa. “Generalization Properties of Bernardi Integral Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 3 (September 2025): 364-74. https://doi.org/10.31801/cfsuasmas.1521845.
EndNote Kamali M, Guney HÖ, Owa S (September 1, 2025) Generalization properties of Bernardi integral operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 3 364–374.
IEEE M. Kamali, H. Ö. Guney, and S. Owa, “Generalization properties of Bernardi integral operator”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 3, pp. 364–374, 2025, doi: 10.31801/cfsuasmas.1521845.
ISNAD Kamali, Muhammet et al. “Generalization Properties of Bernardi Integral Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/3 (September2025), 364-374. https://doi.org/10.31801/cfsuasmas.1521845.
JAMA Kamali M, Guney HÖ, Owa S. Generalization properties of Bernardi integral operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:364–374.
MLA Kamali, Muhammet et al. “Generalization Properties of Bernardi Integral Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 3, 2025, pp. 364-7, doi:10.31801/cfsuasmas.1521845.
Vancouver Kamali M, Guney HÖ, Owa S. Generalization properties of Bernardi integral operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(3):364-7.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.