Research Article
BibTex RIS Cite

Year 2025, Volume: 74 Issue: 3, 523 - 545, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1582901

Abstract

References

  • Aliprantis, C. D., Tourky, R., Cones and Duality, AMS Graduate Studies in Mathematics 84, 2007.
  • Allan, G. R., On a class of locally convex algebras, Proc. Lond. Math. Soc., 15 (1965), 399-421.
  • Apostol, C., $b^*$-Algebras and their representations, J. London Math. Soc., 33 (1971), 30-38.
  • Asadi, M. B., Hassanpour-Yakhdani, Z., Shamloo, S., A locally convex version of Kadison’s representation theorem, Positivity, 24 (2020), 1449-1460.
  • Ay, S., Automatic boundedness of adjointable operators on barreled VH-spaces, Comp. Anal. Op. Th., 16(17) (2022).
  • Ay, S., Gheondea, A., Corrigendum to Representations of $*$-semigroups associated to invariant kernels with values adjointable operators, Lin. Alg. Appl., 589 (2020), 242-246.
  • Ay, S., Gheondea, A., Invariant weakly positive semidefinite kernels with values in topologically ordered $*$-spaces, Stud. Math., 248 (2019), 255-294.
  • Ay, S., Gheondea, A., Representations of $*$-semigroups associated to invariant kernels with values adjointable operators, Lin. Alg. Appl., 486 (2015), 361-388.
  • Ay, S., Gheondea, A., Representations of $*$-semigroups associated to invariant kernels with values continuously adjointable operators, Integr. Equ. Oper. Theory, 87 (2017), 263-307.
  • Bauer, H., Sur le prolongement des formes linéaires positives dans un espace vectoriel ordonné, C.R. Acad. Sci. Paris, 244 (1957), 289-292.
  • Bauer, H., Über die Forsetzung positiver Linearformen, Bayer. Akad. Wiss. Math. Nat. K.L. S.B., (1957), 177-190.
  • de Bruyn, J. V. D., Representations and semisimplicity of ordered topological vector spaces, (2020), arXiv:2009.11777.
  • de Bruyn, J.V.D., Almost all positive continuous linear functionals can be extended, Positivity, 26(15) (2022).
  • Ciurdariu, L., Classes of Linear Operators on Pseudo-Hilbert Spaces and Applications, Part I, Monografii Matematice, Vol. 79, Tipografia Universitàtìi de Vest din Timi¸soara, 2006.
  • Collins, H. S., Completeness, full completeness, and k spaces, Proc. Am. Math. Soc., 6(5) (1955), 832-835.
  • Conway, J. B., A Course in Functional Analysis, Springer Verlag, Berlin, 1985.
  • Davies, E. B., The structure and ideal theory of the predual of a Banach lattice, Trans. Am. Math. Soc., 131(2) (1968), 544-555.
  • Dosi, A. A., Quantum system structures of quantum spaces and entanglement breaking maps, Sbornik: Math., 210(7) (2019), 928-993.
  • Eidelheit, M., Zur Theorie der konvexen Mengen in linearen normierten Räumen, Stud. Math., 6 (1936), 104-111.
  • Folland, G. B., Real Analysis: Modern Techniques and Their Applications, Wiley and Sons, 2nd ed., 1999.
  • Fragoulopoulou, M., Topological Algebras with Involution, Mathematics Studies, Elsevier, 2005.
  • van Gaans, O., Subspaces of normed Riesz spaces, Positivity, 8 (2004), 143-164.
  • Gaşpar, D., Gaşpar, P., An operatorial model for Hilbert $\mathcal{B}(X)$-modules, An. Univ. de Vest Timi¸soara Ser. Mat.-Inf., 40 (2002), 15-29.
  • Gaşpar, D., Gaşpar, P., Reproducing kernel Hilbert $\mathcal{B}(X)$-modules, An. Univ. Vest Timi¸soara Ser. Mat.-Inf., 43(2) (2005), 47-71.
  • Gaşpar, D., Gaşpar, P., Reproducing kernel Hilbert modules over locally $C^*$-algebras, An. Univ. Vest Timi¸soara Ser. Mat.-Inform., 45(1) (2007), 245-252.
  • Gheondea, A., Dilations of some VH-spaces operator valued kernels, Integral Equations and Operator Theory, 74 (2012), 451-479.
  • Gheondea, A., Uğurcan, B. E., On two equivalent dilation theorems in VH-spaces, Compl. Anal. Op. Th., 6 (2011), 625-650.
  • Gheondea, A., Operator models for Hilbert locally $C^*$-modules, Operators and Matrices, 11(3) (2017), 639-667.
  • Grosberg, J., Kre˘ın, M. G., Sur la décomposition des functionnelles en composantes positives, C.R. (Doklady) Acad. Sci. USSR (N.S.), 25 (1939), 723-726.
  • Hustad, O., Linear inequalities and positive extension of linear functionals, Math. Scandinavica, 8(2) (1960), 333-338.
  • Inoue, A., Locally $C^*$-algebras, Mem. Fac. Sci. Kyushu Univ. Ser. A, 25 (1971), 197-235.
  • Kadison, R. V., A representation theory for commutative topological algebra, Mem. Am. Mat. Soc., 7 (1951).
  • Kakutani, S., Concrete representation of abstract (M)-spaces, Ann. Math., 42(4) (1941), 994-1024.
  • Kelley, J. L., Vaught, R. L., The positive cone in Banach Algebras, Trans. Amer. Math. Soc., 74 (1953), 44-55.
  • Kreĭn, M. G., Propriétés fondamentales des ensembles coniques normaux dans léspace de Banach, C.R. (Doklady) Acad. Sci. USSR, 28 (1940), 13-17.
  • Loynes, R. M., Linear operators in $VH$-spaces, Trans. Amer. Math. Soc., 116 (1965), 167-180.
  • Loynes, R. M., On generalized positive-definite functions, Proc. London Math. Soc. III. Ser., 15 (1965), 373-384.
  • Loynes, R. M., Some problems arising from spectral analysis, Symposium on Probability Methods in Analysis (Loutraki, 1966), 197–207, Springer Verlag, Berlin, 1967.
  • Mallios, A., Hermitian K-theory over topological $*$-algebras, J. Math. Anal. Appl., 106 (1985), 454-539.
  • Manuilov, V., Troitsky, E., Hilbert $C^*$-Modules, Amer. Math. Soc., Providence R.I., 2005.
  • Michael, E. A., Locally multiplicatively-convex topological algebras, Mem. Am. Math. Soc., 11 (1952).
  • Murphy, G. J., Positive definite kernels and Hilbert $C^*$-modules, Proc. Edinburgh Math. Soc., 40 (1997), 367-374.
  • Nachbin, L., A characterization of the normed vector ordered spaces of continuous functions over a compact space, Am. J. Math, 71 (1949), 701-705.
  • Namioka, I., Partially ordered linear topological spaces, Mem. Am. Math. Soc., 24 (1957).
  • Narici, E., Beckenstein, L., Topological Vector Spaces, 2nd ed., CRC Press, 2011.
  • Paulsen, V. I., Tomforde, M., Vector spaces with an order unit, Indiana Univ. Math. J., 58 (2009), 1319-1359.
  • Phillips, N. C., Inverse limits of $C^*$-algebras, J. Operator Theory, 19 (1988), 159-195.
  • Riedl, J., Partially ordered locally convex vector spaces and extensions of positive continuous linear mappings, Math. Annalen, 157 (1964), 95-124.
  • Saworotnow, P. P., Linear spaces with an $H^*$-algebra-valued inner product, Trans. Amer. Math. Soc., 262(2) (1980), 543-549.
  • Schaefer, H. H., Halbgeordnete lokalkonvexe Vektorrä ume, Math. Annalen, 135 (1958), 115-141.
  • Schaefer, H. H., Wolff, M. P., Topological Vector Spaces, Springer Grad. Texts in Math., 2nd. ed., 1999.
  • Schmüdgen, K., Über $LMC^*$-Algebren, Math. Nachr., 68 (1975), 167-182.
  • Sebestyen, Z., Every $C^*$-seminorm is automatically submultiplicative, Period. Math. Hun., 10 (1979), 1-8.
  • Voiculescu, D., Dual algebraic structures on operator algebras related to free products, J. Operator Theory, 17 (1987), 85-98.
  • Weron, A., Chobanyan, S. A., Stochastic processes on pseudo-Hilbert spaces [Russian], Bull. Acad. Polon. Ser. Math. Astr. Phys., 21 (1973), 847-854.
  • Weron, A., Prediction theory in Banach spaces, Proceedings of the Winter School of Probability, Karpacz, 207-228, Springer Verlag, Berlin, 1975.
  • Wittstock, G., Ordered normed tensor products, Foundations of Quantum Mechanics and Ordered Linear Spaces, 29 (1974), 67-84.
  • Zhuraev, Y. I., Sharipov, F., Hilbert modules over locally $C^*$-algebras, (2001), arXiv:math/0011053v3.

Isometric representations of calibrated ordered spaces on $C(X)$

Year 2025, Volume: 74 Issue: 3, 523 - 545, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1582901

Abstract

The problem of characterizing normed ordered spaces which admit a representation in the algebraic, order and norm sense as a subspace of $C(X)$, the space of all continuous functions on a compact Hausdorff space is a classical problem that has been considered by many authors. In this article we consider the more general case of calibrated ordered spaces, that is, ordered spaces with a specified family of seminorms generating its topology. For such spaces equivalent conditions on representability as a subspace of $C(X)$ for some locally compact Hausdorff space $X$, in the algebraic, order and seminorm sense are stated and proved. Some characterizations appear to be new even in the normed case. A recent result on isometric representations of locally ordered spaces fall under the results in this paper with more general statements. As an application of the main theorems, we state and prove a characterization of norm additivity property of two positive functionals.

References

  • Aliprantis, C. D., Tourky, R., Cones and Duality, AMS Graduate Studies in Mathematics 84, 2007.
  • Allan, G. R., On a class of locally convex algebras, Proc. Lond. Math. Soc., 15 (1965), 399-421.
  • Apostol, C., $b^*$-Algebras and their representations, J. London Math. Soc., 33 (1971), 30-38.
  • Asadi, M. B., Hassanpour-Yakhdani, Z., Shamloo, S., A locally convex version of Kadison’s representation theorem, Positivity, 24 (2020), 1449-1460.
  • Ay, S., Automatic boundedness of adjointable operators on barreled VH-spaces, Comp. Anal. Op. Th., 16(17) (2022).
  • Ay, S., Gheondea, A., Corrigendum to Representations of $*$-semigroups associated to invariant kernels with values adjointable operators, Lin. Alg. Appl., 589 (2020), 242-246.
  • Ay, S., Gheondea, A., Invariant weakly positive semidefinite kernels with values in topologically ordered $*$-spaces, Stud. Math., 248 (2019), 255-294.
  • Ay, S., Gheondea, A., Representations of $*$-semigroups associated to invariant kernels with values adjointable operators, Lin. Alg. Appl., 486 (2015), 361-388.
  • Ay, S., Gheondea, A., Representations of $*$-semigroups associated to invariant kernels with values continuously adjointable operators, Integr. Equ. Oper. Theory, 87 (2017), 263-307.
  • Bauer, H., Sur le prolongement des formes linéaires positives dans un espace vectoriel ordonné, C.R. Acad. Sci. Paris, 244 (1957), 289-292.
  • Bauer, H., Über die Forsetzung positiver Linearformen, Bayer. Akad. Wiss. Math. Nat. K.L. S.B., (1957), 177-190.
  • de Bruyn, J. V. D., Representations and semisimplicity of ordered topological vector spaces, (2020), arXiv:2009.11777.
  • de Bruyn, J.V.D., Almost all positive continuous linear functionals can be extended, Positivity, 26(15) (2022).
  • Ciurdariu, L., Classes of Linear Operators on Pseudo-Hilbert Spaces and Applications, Part I, Monografii Matematice, Vol. 79, Tipografia Universitàtìi de Vest din Timi¸soara, 2006.
  • Collins, H. S., Completeness, full completeness, and k spaces, Proc. Am. Math. Soc., 6(5) (1955), 832-835.
  • Conway, J. B., A Course in Functional Analysis, Springer Verlag, Berlin, 1985.
  • Davies, E. B., The structure and ideal theory of the predual of a Banach lattice, Trans. Am. Math. Soc., 131(2) (1968), 544-555.
  • Dosi, A. A., Quantum system structures of quantum spaces and entanglement breaking maps, Sbornik: Math., 210(7) (2019), 928-993.
  • Eidelheit, M., Zur Theorie der konvexen Mengen in linearen normierten Räumen, Stud. Math., 6 (1936), 104-111.
  • Folland, G. B., Real Analysis: Modern Techniques and Their Applications, Wiley and Sons, 2nd ed., 1999.
  • Fragoulopoulou, M., Topological Algebras with Involution, Mathematics Studies, Elsevier, 2005.
  • van Gaans, O., Subspaces of normed Riesz spaces, Positivity, 8 (2004), 143-164.
  • Gaşpar, D., Gaşpar, P., An operatorial model for Hilbert $\mathcal{B}(X)$-modules, An. Univ. de Vest Timi¸soara Ser. Mat.-Inf., 40 (2002), 15-29.
  • Gaşpar, D., Gaşpar, P., Reproducing kernel Hilbert $\mathcal{B}(X)$-modules, An. Univ. Vest Timi¸soara Ser. Mat.-Inf., 43(2) (2005), 47-71.
  • Gaşpar, D., Gaşpar, P., Reproducing kernel Hilbert modules over locally $C^*$-algebras, An. Univ. Vest Timi¸soara Ser. Mat.-Inform., 45(1) (2007), 245-252.
  • Gheondea, A., Dilations of some VH-spaces operator valued kernels, Integral Equations and Operator Theory, 74 (2012), 451-479.
  • Gheondea, A., Uğurcan, B. E., On two equivalent dilation theorems in VH-spaces, Compl. Anal. Op. Th., 6 (2011), 625-650.
  • Gheondea, A., Operator models for Hilbert locally $C^*$-modules, Operators and Matrices, 11(3) (2017), 639-667.
  • Grosberg, J., Kre˘ın, M. G., Sur la décomposition des functionnelles en composantes positives, C.R. (Doklady) Acad. Sci. USSR (N.S.), 25 (1939), 723-726.
  • Hustad, O., Linear inequalities and positive extension of linear functionals, Math. Scandinavica, 8(2) (1960), 333-338.
  • Inoue, A., Locally $C^*$-algebras, Mem. Fac. Sci. Kyushu Univ. Ser. A, 25 (1971), 197-235.
  • Kadison, R. V., A representation theory for commutative topological algebra, Mem. Am. Mat. Soc., 7 (1951).
  • Kakutani, S., Concrete representation of abstract (M)-spaces, Ann. Math., 42(4) (1941), 994-1024.
  • Kelley, J. L., Vaught, R. L., The positive cone in Banach Algebras, Trans. Amer. Math. Soc., 74 (1953), 44-55.
  • Kreĭn, M. G., Propriétés fondamentales des ensembles coniques normaux dans léspace de Banach, C.R. (Doklady) Acad. Sci. USSR, 28 (1940), 13-17.
  • Loynes, R. M., Linear operators in $VH$-spaces, Trans. Amer. Math. Soc., 116 (1965), 167-180.
  • Loynes, R. M., On generalized positive-definite functions, Proc. London Math. Soc. III. Ser., 15 (1965), 373-384.
  • Loynes, R. M., Some problems arising from spectral analysis, Symposium on Probability Methods in Analysis (Loutraki, 1966), 197–207, Springer Verlag, Berlin, 1967.
  • Mallios, A., Hermitian K-theory over topological $*$-algebras, J. Math. Anal. Appl., 106 (1985), 454-539.
  • Manuilov, V., Troitsky, E., Hilbert $C^*$-Modules, Amer. Math. Soc., Providence R.I., 2005.
  • Michael, E. A., Locally multiplicatively-convex topological algebras, Mem. Am. Math. Soc., 11 (1952).
  • Murphy, G. J., Positive definite kernels and Hilbert $C^*$-modules, Proc. Edinburgh Math. Soc., 40 (1997), 367-374.
  • Nachbin, L., A characterization of the normed vector ordered spaces of continuous functions over a compact space, Am. J. Math, 71 (1949), 701-705.
  • Namioka, I., Partially ordered linear topological spaces, Mem. Am. Math. Soc., 24 (1957).
  • Narici, E., Beckenstein, L., Topological Vector Spaces, 2nd ed., CRC Press, 2011.
  • Paulsen, V. I., Tomforde, M., Vector spaces with an order unit, Indiana Univ. Math. J., 58 (2009), 1319-1359.
  • Phillips, N. C., Inverse limits of $C^*$-algebras, J. Operator Theory, 19 (1988), 159-195.
  • Riedl, J., Partially ordered locally convex vector spaces and extensions of positive continuous linear mappings, Math. Annalen, 157 (1964), 95-124.
  • Saworotnow, P. P., Linear spaces with an $H^*$-algebra-valued inner product, Trans. Amer. Math. Soc., 262(2) (1980), 543-549.
  • Schaefer, H. H., Halbgeordnete lokalkonvexe Vektorrä ume, Math. Annalen, 135 (1958), 115-141.
  • Schaefer, H. H., Wolff, M. P., Topological Vector Spaces, Springer Grad. Texts in Math., 2nd. ed., 1999.
  • Schmüdgen, K., Über $LMC^*$-Algebren, Math. Nachr., 68 (1975), 167-182.
  • Sebestyen, Z., Every $C^*$-seminorm is automatically submultiplicative, Period. Math. Hun., 10 (1979), 1-8.
  • Voiculescu, D., Dual algebraic structures on operator algebras related to free products, J. Operator Theory, 17 (1987), 85-98.
  • Weron, A., Chobanyan, S. A., Stochastic processes on pseudo-Hilbert spaces [Russian], Bull. Acad. Polon. Ser. Math. Astr. Phys., 21 (1973), 847-854.
  • Weron, A., Prediction theory in Banach spaces, Proceedings of the Winter School of Probability, Karpacz, 207-228, Springer Verlag, Berlin, 1975.
  • Wittstock, G., Ordered normed tensor products, Foundations of Quantum Mechanics and Ordered Linear Spaces, 29 (1974), 67-84.
  • Zhuraev, Y. I., Sharipov, F., Hilbert modules over locally $C^*$-algebras, (2001), arXiv:math/0011053v3.
There are 58 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Research Articles
Authors

Serdar Ay 0000-0003-0483-8487

Publication Date September 23, 2025
Submission Date November 11, 2024
Acceptance Date April 28, 2025
Published in Issue Year 2025 Volume: 74 Issue: 3

Cite

APA Ay, S. (2025). Isometric representations of calibrated ordered spaces on $C(X)$. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(3), 523-545. https://doi.org/10.31801/cfsuasmas.1582901
AMA Ay S. Isometric representations of calibrated ordered spaces on $C(X)$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2025;74(3):523-545. doi:10.31801/cfsuasmas.1582901
Chicago Ay, Serdar. “Isometric Representations of Calibrated Ordered Spaces on $C(X)$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 3 (September 2025): 523-45. https://doi.org/10.31801/cfsuasmas.1582901.
EndNote Ay S (September 1, 2025) Isometric representations of calibrated ordered spaces on $C(X)$. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 3 523–545.
IEEE S. Ay, “Isometric representations of calibrated ordered spaces on $C(X)$”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 3, pp. 523–545, 2025, doi: 10.31801/cfsuasmas.1582901.
ISNAD Ay, Serdar. “Isometric Representations of Calibrated Ordered Spaces on $C(X)$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/3 (September2025), 523-545. https://doi.org/10.31801/cfsuasmas.1582901.
JAMA Ay S. Isometric representations of calibrated ordered spaces on $C(X)$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:523–545.
MLA Ay, Serdar. “Isometric Representations of Calibrated Ordered Spaces on $C(X)$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 3, 2025, pp. 523-45, doi:10.31801/cfsuasmas.1582901.
Vancouver Ay S. Isometric representations of calibrated ordered spaces on $C(X)$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(3):523-45.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.