Research Article
BibTex RIS Cite
Year 2021, , 67 - 76, 30.11.2021
https://doi.org/10.51537/chaos.975419

Abstract

References

  • Ahsan, H. and M. D. Mufti, 2020 Comprehensive power system stability improvementwith rocof controlled smes. Electric Power Components and Systems 48: 162–173.
  • Chen, H.-K., T.-N. Lin, and J.-H. Chen, 2005 Dynamic analysis, controlling chaos and chaotification of a smib power system. Chaos, Solitons & Fractals 24: 1307–1315.
  • Chiang, H.-D., C.-W. Liu, P. P. Varaiya, F. F.Wu, and M. G. Lauby, 1993 Chaos in a simple power system. IEEE Transactions on Power Systems 8: 1407–1417.
  • Das, P., P. C. Gupta, and P. P. Singh, 2021 Bifurcation, chaos and pid sliding mode control of 3-bus power system. In 2020 3rd In- ternational Conference on Energy, Power and Environment: Towards Clean Energy Technologies, pp. 1–6, IEEE.
  • DELAVAR˙I, H. and E. BAYAT, 2015 Comparison of different techniques for tuning of power system stabilizer. Cumhuriyet Üniversitesi Fen-Edebiyat Fakültesi Fen Bilimleri Dergisi 36: 248–257.
  • Demello, F. P. and C. Concordia, 1969 Concepts of synchronous machine stability as affected by excitation control. IEEE Transactions on power apparatus and systems 88: 316–329.
  • Dong, J., S. Li, S.Wu, T. He, B. Yang, et al., 2017 Nonlinear observerbased robust passive control of doubly-fed induction generators for power system stability enhancement via energy reshaping. Energies 10: 1082.
  • Ekinci, S. and B. Hekimoglu, 2018 Parameter optimization of power system stabilizer via salp swarm algorithm. In 2018 5th international conference on electrical and electronic engineering (ICEEE), pp. 143–147, IEEE
  • Fonzin Fozin, T., P. Megavarna Ezhilarasu, Z. Njitacke Tabekoueng, G. Leutcho, J. Kengne, et al., 2019 On the dynamics of a simplified canonical chua’s oscillator with smooth hyperbolic sine nonlinearity: hyperchaos, multistability and multistability control. Chaos: An Interdisciplinary Journal of Nonlinear Science 29: 113105.
  • Harb, A. M. and N. Abdel-Jabbar, 2003 Controlling hopf bifurcation and chaos in a small power system. Chaos, Solitons & Fractals 18: 1055–1063.
  • Huang, R., R. Diao, Y. Li, J. Sanchez-Gasca, Z. Huang, et al., 2017 Calibrating parameters of power system stability models using advanced ensemble kalman filter. IEEE Transactions on Power Systems 33: 2895–2905.
  • Jamal, A., S. Suripto, and R. Syahputra, 2017 Power flow optimization using upfc based on neuro-fuzzy method for multi-machine power system stability. International Journal of Applied Engineering Research (IJAER) 12: 898–907.
  • Kumar, R., R. Singh, H. Ashfaq, S. K. Singh, and M. Badoni, 2021 Power system stability enhancement by damping and control of sub-synchronous torsional oscillations using whale optimization algorithm based type-2 wind turbines. ISA transactions 108: 240– 256.
  • Li, C. and G. Chen, 2004 Chaos and hyperchaos in the fractionalorder rössler equations. Physica A: Statistical Mechanics and its Applications 341: 55–61.
  • Li, Y., W. K. Tang, and G. Chen, 2005 Hyperchaos evolved from the generalized lorenz equation. International Journal of Circuit Theory and Applications 33: 235–251.
  • Liu, Z., C. Wu, J. Wang, and Y. Hu, 2019 A color image encryption using dynamic dna and 4-d memristive hyper-chaos. IEEE Access 7: 78367–78378.
  • Matsumoto, T., L. Chua, and K. Kobayashi, 1986 Hyper chaos: laboratory experiment and numerical confirmation. IEEE Transactions on Circuits and Systems 33: 1143–1147.
  • Nangrani, S. and S. Bhat, 2018 Fractional order controller for controlling power system dynamic behavior. Asian Journal of Control 20: 403–414.
  • Rech, P. C., 2017 Hyperchaos and quasiperiodicity from a fourdimensional system based on the lorenz system. The European Physical Journal B 90: 1–7.
  • Rossler, O., 1979 An equation for hyperchaos. Physics Letters A 71: 155–157.
  • Rössler, O. E. and C. Letellier, 2020 Hyperchaos. In Chaos, pp. 55–62, Springer.
  • Sahu, P. R., P. K. Hota, and S. Panda, 2018 Power system stability enhancement by fractional order multi input sssc based controller employing whale optimization algorithm. Journal of Electrical Systems and Information Technology 5: 326–336.
  • Sajjadi, S. S., D. Baleanu, A. Jajarmi, and H. M. Pirouz, 2020 A new adaptive synchronization and hyperchaos control of a biological snap oscillator. Chaos, Solitons & Fractals 138: 109919.
  • Sauer, P. W. and M. A. Pai, 1998 Power system dynamics and stability, volume 101.Wiley Online Library.
  • Sharma, A., L. Nagar, N. Patidar, M. Kolhe, S. Nandanwar, et al., 2017 Minimizing uncertainties with improved power system stability using wide area fuzzy-2 logic based damping controller. In 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT), pp. 1–5, IEEE.
  • Sheikh, A. F. and S. K. Starrett, 2015 Comparison of input signal choices for a fuzzy logic-based power system stabilizer. In 2015 North American Power Symposium (NAPS), pp. 1–6, IEEE.
  • Singh, N. and P. Agnihotri, 2018 Power system stability improvement using facts devices. International Journal of Advance Research and Development 3: 171–176.
  • Tian, K., C. Bai, H.-P. Ren, and C. Grebogi, 2019 Hyperchaos synchronization using univariate impulse control. Physical Review E 100: 052215.
  • Vaidyanathan, S., C. Lien, W. Fuadi, M. Mamat, et al., 2020 A new 4-d multi-stable hyperchaotic two-scroll system with noequilibrium and its hyperchaos synchronization. In Journal of Physics: Conference Series, volume 1477, p. 022018, IOP Publishing.
  • Van Dai, L., D. Duc Tung, T. Le Thang Dong, and C. Le Quyen, 2017 Improving power system stability with gramian matrix-based optimal setting of a single series facts device: feasibility study in vietnamese power system. Complexity 2017.
  • Wang, X. and M. Wang, 2008 A hyperchaos generated from lorenz system. Physica A: Statistical Mechanics and its Applications 387: 3751–3758.
  • Xiu, C., R. Zhou, S. Zhao, and G. Xu, 2021 Memristive hyperchaos secure communication based on sliding mode control. Nonlinear Dynamics 104: 789–805.
  • Yu, F., L. Liu, B. He, Y. Huang, C. Shi, et al., 2019 Analysis and fpga realization of a novel 5d hyperchaotic four-wing memristive system, active control synchronization, and secure communication application. Complexity 2019.
  • Yu, Y., H. Jia, P. Li, and J. Su, 2003 Power system instability and chaos. Electric power systems research 65: 187–195.
  • Yuan, W., X. Yang, W. Guo, and W. Hu, 2017 A double-domain image encryption using hyper chaos. In 2017 19th International Conference on Transparent Optical Networks (ICTON), pp. 1–4, IEEE.
  • Zhu, S. and C. Zhu, 2020 Secure image encryption algorithm based on hyperchaos and dynamic dna coding. Entropy 22: 772.

An Analysis of Power System Stability against Hyperchaotic Noises and Blackouts

Year 2021, , 67 - 76, 30.11.2021
https://doi.org/10.51537/chaos.975419

Abstract

This study investigates the power systems that involve various numbers of busbars. To prevent the disturbances and instabilities in the power systems, power system stabilizers and various control methods have been used. A hyperchaotic blackout has been created by using an existing hyperchaotic system. Hyperchaotic voltage collapse and hyperchaotic disturbance have been injected to the test systems. The situations of the various power systems are illustrated under proposed hyperchaotic blackout and noise. The stability analysis of the power system has been executed according to the dynamic features of hyperchaos.

References

  • Ahsan, H. and M. D. Mufti, 2020 Comprehensive power system stability improvementwith rocof controlled smes. Electric Power Components and Systems 48: 162–173.
  • Chen, H.-K., T.-N. Lin, and J.-H. Chen, 2005 Dynamic analysis, controlling chaos and chaotification of a smib power system. Chaos, Solitons & Fractals 24: 1307–1315.
  • Chiang, H.-D., C.-W. Liu, P. P. Varaiya, F. F.Wu, and M. G. Lauby, 1993 Chaos in a simple power system. IEEE Transactions on Power Systems 8: 1407–1417.
  • Das, P., P. C. Gupta, and P. P. Singh, 2021 Bifurcation, chaos and pid sliding mode control of 3-bus power system. In 2020 3rd In- ternational Conference on Energy, Power and Environment: Towards Clean Energy Technologies, pp. 1–6, IEEE.
  • DELAVAR˙I, H. and E. BAYAT, 2015 Comparison of different techniques for tuning of power system stabilizer. Cumhuriyet Üniversitesi Fen-Edebiyat Fakültesi Fen Bilimleri Dergisi 36: 248–257.
  • Demello, F. P. and C. Concordia, 1969 Concepts of synchronous machine stability as affected by excitation control. IEEE Transactions on power apparatus and systems 88: 316–329.
  • Dong, J., S. Li, S.Wu, T. He, B. Yang, et al., 2017 Nonlinear observerbased robust passive control of doubly-fed induction generators for power system stability enhancement via energy reshaping. Energies 10: 1082.
  • Ekinci, S. and B. Hekimoglu, 2018 Parameter optimization of power system stabilizer via salp swarm algorithm. In 2018 5th international conference on electrical and electronic engineering (ICEEE), pp. 143–147, IEEE
  • Fonzin Fozin, T., P. Megavarna Ezhilarasu, Z. Njitacke Tabekoueng, G. Leutcho, J. Kengne, et al., 2019 On the dynamics of a simplified canonical chua’s oscillator with smooth hyperbolic sine nonlinearity: hyperchaos, multistability and multistability control. Chaos: An Interdisciplinary Journal of Nonlinear Science 29: 113105.
  • Harb, A. M. and N. Abdel-Jabbar, 2003 Controlling hopf bifurcation and chaos in a small power system. Chaos, Solitons & Fractals 18: 1055–1063.
  • Huang, R., R. Diao, Y. Li, J. Sanchez-Gasca, Z. Huang, et al., 2017 Calibrating parameters of power system stability models using advanced ensemble kalman filter. IEEE Transactions on Power Systems 33: 2895–2905.
  • Jamal, A., S. Suripto, and R. Syahputra, 2017 Power flow optimization using upfc based on neuro-fuzzy method for multi-machine power system stability. International Journal of Applied Engineering Research (IJAER) 12: 898–907.
  • Kumar, R., R. Singh, H. Ashfaq, S. K. Singh, and M. Badoni, 2021 Power system stability enhancement by damping and control of sub-synchronous torsional oscillations using whale optimization algorithm based type-2 wind turbines. ISA transactions 108: 240– 256.
  • Li, C. and G. Chen, 2004 Chaos and hyperchaos in the fractionalorder rössler equations. Physica A: Statistical Mechanics and its Applications 341: 55–61.
  • Li, Y., W. K. Tang, and G. Chen, 2005 Hyperchaos evolved from the generalized lorenz equation. International Journal of Circuit Theory and Applications 33: 235–251.
  • Liu, Z., C. Wu, J. Wang, and Y. Hu, 2019 A color image encryption using dynamic dna and 4-d memristive hyper-chaos. IEEE Access 7: 78367–78378.
  • Matsumoto, T., L. Chua, and K. Kobayashi, 1986 Hyper chaos: laboratory experiment and numerical confirmation. IEEE Transactions on Circuits and Systems 33: 1143–1147.
  • Nangrani, S. and S. Bhat, 2018 Fractional order controller for controlling power system dynamic behavior. Asian Journal of Control 20: 403–414.
  • Rech, P. C., 2017 Hyperchaos and quasiperiodicity from a fourdimensional system based on the lorenz system. The European Physical Journal B 90: 1–7.
  • Rossler, O., 1979 An equation for hyperchaos. Physics Letters A 71: 155–157.
  • Rössler, O. E. and C. Letellier, 2020 Hyperchaos. In Chaos, pp. 55–62, Springer.
  • Sahu, P. R., P. K. Hota, and S. Panda, 2018 Power system stability enhancement by fractional order multi input sssc based controller employing whale optimization algorithm. Journal of Electrical Systems and Information Technology 5: 326–336.
  • Sajjadi, S. S., D. Baleanu, A. Jajarmi, and H. M. Pirouz, 2020 A new adaptive synchronization and hyperchaos control of a biological snap oscillator. Chaos, Solitons & Fractals 138: 109919.
  • Sauer, P. W. and M. A. Pai, 1998 Power system dynamics and stability, volume 101.Wiley Online Library.
  • Sharma, A., L. Nagar, N. Patidar, M. Kolhe, S. Nandanwar, et al., 2017 Minimizing uncertainties with improved power system stability using wide area fuzzy-2 logic based damping controller. In 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT), pp. 1–5, IEEE.
  • Sheikh, A. F. and S. K. Starrett, 2015 Comparison of input signal choices for a fuzzy logic-based power system stabilizer. In 2015 North American Power Symposium (NAPS), pp. 1–6, IEEE.
  • Singh, N. and P. Agnihotri, 2018 Power system stability improvement using facts devices. International Journal of Advance Research and Development 3: 171–176.
  • Tian, K., C. Bai, H.-P. Ren, and C. Grebogi, 2019 Hyperchaos synchronization using univariate impulse control. Physical Review E 100: 052215.
  • Vaidyanathan, S., C. Lien, W. Fuadi, M. Mamat, et al., 2020 A new 4-d multi-stable hyperchaotic two-scroll system with noequilibrium and its hyperchaos synchronization. In Journal of Physics: Conference Series, volume 1477, p. 022018, IOP Publishing.
  • Van Dai, L., D. Duc Tung, T. Le Thang Dong, and C. Le Quyen, 2017 Improving power system stability with gramian matrix-based optimal setting of a single series facts device: feasibility study in vietnamese power system. Complexity 2017.
  • Wang, X. and M. Wang, 2008 A hyperchaos generated from lorenz system. Physica A: Statistical Mechanics and its Applications 387: 3751–3758.
  • Xiu, C., R. Zhou, S. Zhao, and G. Xu, 2021 Memristive hyperchaos secure communication based on sliding mode control. Nonlinear Dynamics 104: 789–805.
  • Yu, F., L. Liu, B. He, Y. Huang, C. Shi, et al., 2019 Analysis and fpga realization of a novel 5d hyperchaotic four-wing memristive system, active control synchronization, and secure communication application. Complexity 2019.
  • Yu, Y., H. Jia, P. Li, and J. Su, 2003 Power system instability and chaos. Electric power systems research 65: 187–195.
  • Yuan, W., X. Yang, W. Guo, and W. Hu, 2017 A double-domain image encryption using hyper chaos. In 2017 19th International Conference on Transparent Optical Networks (ICTON), pp. 1–4, IEEE.
  • Zhu, S. and C. Zhu, 2020 Secure image encryption algorithm based on hyperchaos and dynamic dna coding. Entropy 22: 772.
There are 36 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Hakan Öztürk 0000-0002-4568-7358

Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Öztürk, H. (2021). An Analysis of Power System Stability against Hyperchaotic Noises and Blackouts. Chaos Theory and Applications, 3(2), 67-76. https://doi.org/10.51537/chaos.975419

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg