Research Article
BibTex RIS Cite

A Chaos Based Pseudo-Random Bit Generator Using Multiple Digits Comparison

Year 2020, Volume: 2 Issue: 2, 58 - 68, 30.11.2020

Abstract

This work presents a simple method of designing pseudo-random bit generator by generating multiple bits per iteration from the decimal part of a chaotic map. This is done by extracting the decimal part of the state in each iteration and comparing each digit separately to a threshold value. This way, more than one bits can be generated in each iteration, in contrast to most well-known generators based on discrete-time chaotic maps, which generate only one bit. The method is tested on multiple maps and it is seen that for most, around 8 digits can be extracted each time, so that the final bitstream passes all NIST tests. The generated PRBG is then studied through a simple image encryption application, by combining shuffling and the XOR operation.

Supporting Institution

State Scholarships Foundation (IKY)

Project Number

MIS-5033021

Thanks

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project "Reinforcement of Postdoctoral Researchers - 2nd Cycle" (MIS-5033021), implemented by the State Scholarships Foundation (IKY). The authors would like to thank the anonymous reviewers for their insightful comments that helped improve the final work.

References

  • Addabbo, T., M. Alioto, A. Fort, A. Pasini, S. Rocchi, et al., 2007 A class of maximum-period nonlinear congruential generators derived from the rényi chaotic map. IEEE Transactions on Circuits and Systems I: Regular Papers 54: 816–828.
  • Ahmad, M., M. Doja, and M. S. Beg, 2018 A new chaotic map based secure and efficient pseudo-random bit sequence generation. In International Symposium on Security in Computing and Communication, pp. 543–553, Springer.
  • Akgül, A., C. Arslan, and B. Arıcıoglu, 2019 Design of an interface for random number generators based on integer and fractional order chaotic systems. Chaos Theory and Applications 1: 1–18.
  • Akgul, A., C. Li, and I. Pehlivan, 2017 Amplitude control analysis of a four-wing chaotic attractor, its electronic circuit designs and microcontroller-based random number generator. Journal of Circuits, Systems and Computers 26: 1750190.
  • Ali, K. M. and M. Khan, 2019 Application based construction and optimization of substitution boxes over 2d mixed chaotic maps. International Journal of Theoretical Physics 58: 3091–3117.
  • Alvarez, G. and S. Li, 2006 Some basic cryptographic requirements for chaos-based cryptosystems. International journal of bifurcation and chaos 16: 2129–2151.
  • Alzaidi, A. A., M. Ahmad, M. N. Doja, E. Al Solami, and M. S. Beg, 2018 A new 1d chaotic map and β-hill climbing for generating substitution-boxes. IEEE Access 6: 55405–55418.
  • Belazi, A., A. A. Abd El-Latif, and S. Belghith, 2016 A novel image encryption scheme based on substitution-permutation network and chaos. Signal Processing 128: 155–170.
  • Belazi, A. and A. A. A. El-Latif, 2017 A simple yet efficient s-box method based on chaotic sine map. Optik 130: 1438–1444.
  • Boutayeb, M., M. Darouach, and H. Rafaralahy, 2002 Generalized state-space observers for chaotic synchronization and secure communication. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49: 345–349.
  • Bovy, J., 2004 Lyapunov exponents and strange attractors in discrete and continuous dynamical systems. Theoretica Phys. Project, Catholic Univ. Leuven, Flanders, Belgium, Tech. Rep 9: 1–19.
  • Datcu, O., C. Macovei, and R. Hobincu, 2020 Chaos based cryptographic pseudo-random number generator template with dynamic state change. Applied Sciences 10: 451.
  • Demir, K. and S. Ergün, 2018 An analysis of deterministic chaos as an entropy source for random number generators. Entropy 20: 957.
  • El-Naggary, A. I. and K. H. Moussa, 2020 Pseudorandom bit generator based on chaotic parameter hopping chaos. International Journal of Engineering and Technology 12: 1136–1143.
  • Elabady, N., H. Abdalkader, M. Moussa, and S. F. Sabbeh, 2014 Image encryption based on new one-dimensional chaotic map. In 2014 International Conference on Engineering and Technology (ICET), pp. 1–6, IEEE.
  • Gao, T. and Z. Chen, 2008 A new image encryption algorithm based on hyper-chaos. Physics Letters A 372: 394–400.
  • Ge, R., G. Yang, J. Wu, Y. Chen, G. Coatrieux, et al., 2019 A novel chaos-based symmetric image encryption using bit-pair level process. IEEE Access 7: 99470–99480.
  • Han, C., 2019 An image encryption algorithm based on modified logistic chaotic map. Optik 181: 779–785.
  • Hua, Z. and Y. Zhou, 2016 Image encryption using 2d logisticadjusted-sine map. Information Sciences 339: 237–253.
  • Huang, X., 2012 Image encryption algorithm using chaotic chebyshev generator. Nonlinear Dynamics 67: 2411–2417.
  • Irani, B. Y., P. Ayubi, F. A. Jabalkandi, M. Y. Valandar, and M. J. Barani, 2019 Digital image scrambling based on a new one dimensional coupled sine map. Nonlinear Dynamics 97: 2693– 2721.
  • Irfan, M., A. Ali, M. A. Khan, M. Ehatisham-ul Haq, S. N. Mehmood Shah, et al., 2020 Pseudorandom number generator (prng) design using hyper-chaotic modified robust logistic map (hc-mrlm). Electronics 9: 104.
  • Jamal, S. S., T. Shah, and I. Hussain, 2013 An efficient scheme for digital watermarking using chaotic map. Nonlinear Dynamics 73: 1469–1474.
  • Kang, Q., K. Li, and J. Yang, 2014 A digital watermarking approach based on dct domain combining qr code and chaotic theory. In 2014 IEEE 10th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 331–337, IEEE.
  • Ketthong, P. and W. San-Um, 2014 A robust signumbased piecewise-linaer chaotic map and its application to microcontroller-based cost-effective random-bit generator. In 2014 International Electrical Engineering Congress (iEECON), pp. 1–4, IEEE.
  • Khanzadi, H., M. Eshghi, and S. E. Borujeni, 2014 Image encryption using random bit sequence based on chaotic maps. Arabian Journal for Science and engineering 39: 1039–1047.
  • Liu, L., S. Miao, M. Cheng, and X. Gao, 2016 A pseudorandom bit generator based on new multi-delayed chebyshev map. Information Processing Letters 116: 674–681.
  • Liu, Y., Z. Qin, X. Liao, and J. Wu, 2020 Cryptanalysis and enhancement of an image encryption scheme based on a 1-d coupled sine map. NONLINEAR DYNAMICS .
  • May, R. M., 1976 Simple mathematical models with very complicated dynamics. Nature 261: 459–467. Moafimadani, S. S., Y. Chen, and C. Tang, 2019 A new algorithm for medical color images encryption using chaotic systems. Entropy 21: 577.
  • Moafimadani, S. S., Y. Chen, and C. Tang, 2019 A new algorithm for medical color images encryption using chaotic systems. Entropy 21: 577.
  • Nosrati, K., C. Volos, and A. Azemi, 2017 Cubature kalman filterbased chaotic synchronization and image encryption. Signal Processing: Image Communication 58: 35–48.
  • Özkaynak, F., 2018 Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dynamics 92: 305–313. Pak, C. and L. Huang, 2017 A new color image encryption using combination of the 1d chaotic map. Signal Processing 138: 129– 137.
  • Pak, C. and L. Huang, 2017 A new color image encryption using combination of the 1d chaotic map. Signal Processing 138: 129– 137.
  • Pareek, N., V. Patidar, and K. Sud, 2005 Cryptography using multiple one-dimensional chaotic maps. Communications in Nonlinear Science and Numerical Simulation 10: 715–723.
  • Patidar, V., K. K. Sud, and N. K. Pareek, 2009 A pseudo random bit generator based on chaotic logistic map and its statistical testing. Informatica 33.
  • Phatak, S. and S. S. Rao, 1995 Logistic map: A possible randomnumber generator. Physical review E 51: 3670. Roy, S., S. Chatterjee, A. K. Das, S. Chattopadhyay, S. Kumari, et al., 2017 Chaotic map-based anonymous user authentication scheme with user biometrics and fuzzy extractor for crowdsourcing internet of things. IEEE Internet of Things Journal 5: 2884–2895.
  • Roy, S., S. Chatterjee, A. K. Das, S. Chattopadhyay, S. Kumari, et al., 2017 Chaotic map-based anonymous user authentication scheme with user biometrics and fuzzy extractor for crowdsourcing internet of things. IEEE Internet of Things Journal 5: 2884–2895.
  • Rukhin, A., J. Soto, J. Nechvatal, M. Smid, and E. Barker, 2001 A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, Booz-Allen and Hamilton Inc Mclean Va.
  • Sarmah, H. K. and M. C. Das, 2014 Various bifurcations in a cubic map. International Journal of Advanced Scientific and Technical Research 3: 827–846.
  • Shaukat, S., A. Arshid, A. Eleyan, S. A. Shah, J. Ahmad, et al., 2020 Chaos theory and its application: An essential framework for image encryption. Chaos Theory and Applications 2: 15–20.
  • Sheng, S. and X. Wu, 2012 A new digital anti-counterfeiting scheme based on chaotic cryptography. In 2012 International Conference on ICT Convergence (ICTC), pp. 687–691, IEEE.
  • Stojanovski, T. and L. Kocarev, 2001 Chaos-based random number generators-part i: analysis [cryptography]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48: 281–288.
  • Stoyanov, B., 2013 Pseudo-random bit generator based on chebyshev map. In AIP Conference Proceedings, volume 1561, pp. 369– 372, American Institute of Physics.
  • Stoyanov, B. and T. Ivanova, 2019 Chaosa: Chaotic map based random number generator on arduino platform. In AIP Conference Proceedings, volume 2172, p. 090001, AIP Publishing LLC.
  • Stoyanov, B. and K. Kordov, 2015 Image encryption using chebyshev map and rotation equation. Entropy 17: 2117–2139.
  • Strogatz, S. H., 2018 Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC Press.
  • Ursulean, R., 2004 Reconsidering the generalized logistic map as a pseudo random bit generator. Elektronika ir elektrotechnika 56.
  • Volos, C. K., 2013 Chaotic random bit generator realized with a microcontroller. Journal of Computations & Modelling 3: 115– 136.
  • Volos, C. K., I. Kyprianidis, and I. Stouboulos, 2013a Text encryption scheme realized with a chaotic pseudo-random bit generator. Journal of Engineering Science & Technology Review 6.
  • Volos, C. K., I. M. Kyprianidis, and I. N. Stouboulos, 2013b Image encryption process based on chaotic synchronization phenomena. Signal Processing 93: 1328–1340.
  • Wang, X., Ü. Çavusoglu, S. Kacar, A. Akgul, V.-T. Pham, et al., 2019 S-box based image encryption application using a chaotic system without equilibrium. Applied Sciences 9: 781.
  • Wang, X., L. Liu, and Y. Zhang, 2015 A novel chaotic block image encryption algorithm based on dynamic random growth technique. Optics and Lasers in Engineering 66: 10–18.
  • Wang, X.-Y. and Y.-X. Xie, 2012 A design of pseudo-random bit generator based on single chaotic system. International Journal of Modern Physics C 23: 1250024.
  • Wang, X.-Y., J.-J. Zhang, F.-C. Zhang, and G.-H. Cao, 2019b New chaotical image encryption algorithm based on fisher–yatess scrambling and dna coding. Chinese Physics B 28: 040504.
  • Wang, Y., Z. Liu, J. Ma, and H. He, 2016 A pseudorandom number generator based on piecewise logistic map. Nonlinear Dynamics 83: 2373–2391.
  • Wang, Z., A. Akgul, V.-T. Pham, and S. Jafari, 2017 Chaos-based application of a novel no-equilibrium chaotic system with coexisting attractors. Nonlinear Dynamics 89: 1877–1887.
  • Zhang, J., L. Tian, and H.-M. Tai, 2004 A new watermarking method based on chaotic maps. In 2004 IEEE International Conference on Multimedia and Expo (ICME)(IEEE Cat. No. 04TH8763), volume 2, pp. 939–942, IEEE.
  • Zhao, Y., C. Gao, J. Liu, and S. Dong, 2019 A self-perturbed pseudorandom sequence generator based on hyperchaos. Chaos, Solitons & Fractals: X 4: 100023.
  • Zhou, Y., L. Bao, and C. P. Chen, 2014 A new 1d chaotic system for image encryption. Signal processing 97: 172–182.
  • Zhu, C., G. Wang, and K. Sun, 2018 Improved cryptanalysis and enhancements of an image encryption scheme using combined 1d chaotic maps. Entropy 20: 843.
Year 2020, Volume: 2 Issue: 2, 58 - 68, 30.11.2020

Abstract

Project Number

MIS-5033021

References

  • Addabbo, T., M. Alioto, A. Fort, A. Pasini, S. Rocchi, et al., 2007 A class of maximum-period nonlinear congruential generators derived from the rényi chaotic map. IEEE Transactions on Circuits and Systems I: Regular Papers 54: 816–828.
  • Ahmad, M., M. Doja, and M. S. Beg, 2018 A new chaotic map based secure and efficient pseudo-random bit sequence generation. In International Symposium on Security in Computing and Communication, pp. 543–553, Springer.
  • Akgül, A., C. Arslan, and B. Arıcıoglu, 2019 Design of an interface for random number generators based on integer and fractional order chaotic systems. Chaos Theory and Applications 1: 1–18.
  • Akgul, A., C. Li, and I. Pehlivan, 2017 Amplitude control analysis of a four-wing chaotic attractor, its electronic circuit designs and microcontroller-based random number generator. Journal of Circuits, Systems and Computers 26: 1750190.
  • Ali, K. M. and M. Khan, 2019 Application based construction and optimization of substitution boxes over 2d mixed chaotic maps. International Journal of Theoretical Physics 58: 3091–3117.
  • Alvarez, G. and S. Li, 2006 Some basic cryptographic requirements for chaos-based cryptosystems. International journal of bifurcation and chaos 16: 2129–2151.
  • Alzaidi, A. A., M. Ahmad, M. N. Doja, E. Al Solami, and M. S. Beg, 2018 A new 1d chaotic map and β-hill climbing for generating substitution-boxes. IEEE Access 6: 55405–55418.
  • Belazi, A., A. A. Abd El-Latif, and S. Belghith, 2016 A novel image encryption scheme based on substitution-permutation network and chaos. Signal Processing 128: 155–170.
  • Belazi, A. and A. A. A. El-Latif, 2017 A simple yet efficient s-box method based on chaotic sine map. Optik 130: 1438–1444.
  • Boutayeb, M., M. Darouach, and H. Rafaralahy, 2002 Generalized state-space observers for chaotic synchronization and secure communication. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49: 345–349.
  • Bovy, J., 2004 Lyapunov exponents and strange attractors in discrete and continuous dynamical systems. Theoretica Phys. Project, Catholic Univ. Leuven, Flanders, Belgium, Tech. Rep 9: 1–19.
  • Datcu, O., C. Macovei, and R. Hobincu, 2020 Chaos based cryptographic pseudo-random number generator template with dynamic state change. Applied Sciences 10: 451.
  • Demir, K. and S. Ergün, 2018 An analysis of deterministic chaos as an entropy source for random number generators. Entropy 20: 957.
  • El-Naggary, A. I. and K. H. Moussa, 2020 Pseudorandom bit generator based on chaotic parameter hopping chaos. International Journal of Engineering and Technology 12: 1136–1143.
  • Elabady, N., H. Abdalkader, M. Moussa, and S. F. Sabbeh, 2014 Image encryption based on new one-dimensional chaotic map. In 2014 International Conference on Engineering and Technology (ICET), pp. 1–6, IEEE.
  • Gao, T. and Z. Chen, 2008 A new image encryption algorithm based on hyper-chaos. Physics Letters A 372: 394–400.
  • Ge, R., G. Yang, J. Wu, Y. Chen, G. Coatrieux, et al., 2019 A novel chaos-based symmetric image encryption using bit-pair level process. IEEE Access 7: 99470–99480.
  • Han, C., 2019 An image encryption algorithm based on modified logistic chaotic map. Optik 181: 779–785.
  • Hua, Z. and Y. Zhou, 2016 Image encryption using 2d logisticadjusted-sine map. Information Sciences 339: 237–253.
  • Huang, X., 2012 Image encryption algorithm using chaotic chebyshev generator. Nonlinear Dynamics 67: 2411–2417.
  • Irani, B. Y., P. Ayubi, F. A. Jabalkandi, M. Y. Valandar, and M. J. Barani, 2019 Digital image scrambling based on a new one dimensional coupled sine map. Nonlinear Dynamics 97: 2693– 2721.
  • Irfan, M., A. Ali, M. A. Khan, M. Ehatisham-ul Haq, S. N. Mehmood Shah, et al., 2020 Pseudorandom number generator (prng) design using hyper-chaotic modified robust logistic map (hc-mrlm). Electronics 9: 104.
  • Jamal, S. S., T. Shah, and I. Hussain, 2013 An efficient scheme for digital watermarking using chaotic map. Nonlinear Dynamics 73: 1469–1474.
  • Kang, Q., K. Li, and J. Yang, 2014 A digital watermarking approach based on dct domain combining qr code and chaotic theory. In 2014 IEEE 10th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 331–337, IEEE.
  • Ketthong, P. and W. San-Um, 2014 A robust signumbased piecewise-linaer chaotic map and its application to microcontroller-based cost-effective random-bit generator. In 2014 International Electrical Engineering Congress (iEECON), pp. 1–4, IEEE.
  • Khanzadi, H., M. Eshghi, and S. E. Borujeni, 2014 Image encryption using random bit sequence based on chaotic maps. Arabian Journal for Science and engineering 39: 1039–1047.
  • Liu, L., S. Miao, M. Cheng, and X. Gao, 2016 A pseudorandom bit generator based on new multi-delayed chebyshev map. Information Processing Letters 116: 674–681.
  • Liu, Y., Z. Qin, X. Liao, and J. Wu, 2020 Cryptanalysis and enhancement of an image encryption scheme based on a 1-d coupled sine map. NONLINEAR DYNAMICS .
  • May, R. M., 1976 Simple mathematical models with very complicated dynamics. Nature 261: 459–467. Moafimadani, S. S., Y. Chen, and C. Tang, 2019 A new algorithm for medical color images encryption using chaotic systems. Entropy 21: 577.
  • Moafimadani, S. S., Y. Chen, and C. Tang, 2019 A new algorithm for medical color images encryption using chaotic systems. Entropy 21: 577.
  • Nosrati, K., C. Volos, and A. Azemi, 2017 Cubature kalman filterbased chaotic synchronization and image encryption. Signal Processing: Image Communication 58: 35–48.
  • Özkaynak, F., 2018 Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dynamics 92: 305–313. Pak, C. and L. Huang, 2017 A new color image encryption using combination of the 1d chaotic map. Signal Processing 138: 129– 137.
  • Pak, C. and L. Huang, 2017 A new color image encryption using combination of the 1d chaotic map. Signal Processing 138: 129– 137.
  • Pareek, N., V. Patidar, and K. Sud, 2005 Cryptography using multiple one-dimensional chaotic maps. Communications in Nonlinear Science and Numerical Simulation 10: 715–723.
  • Patidar, V., K. K. Sud, and N. K. Pareek, 2009 A pseudo random bit generator based on chaotic logistic map and its statistical testing. Informatica 33.
  • Phatak, S. and S. S. Rao, 1995 Logistic map: A possible randomnumber generator. Physical review E 51: 3670. Roy, S., S. Chatterjee, A. K. Das, S. Chattopadhyay, S. Kumari, et al., 2017 Chaotic map-based anonymous user authentication scheme with user biometrics and fuzzy extractor for crowdsourcing internet of things. IEEE Internet of Things Journal 5: 2884–2895.
  • Roy, S., S. Chatterjee, A. K. Das, S. Chattopadhyay, S. Kumari, et al., 2017 Chaotic map-based anonymous user authentication scheme with user biometrics and fuzzy extractor for crowdsourcing internet of things. IEEE Internet of Things Journal 5: 2884–2895.
  • Rukhin, A., J. Soto, J. Nechvatal, M. Smid, and E. Barker, 2001 A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, Booz-Allen and Hamilton Inc Mclean Va.
  • Sarmah, H. K. and M. C. Das, 2014 Various bifurcations in a cubic map. International Journal of Advanced Scientific and Technical Research 3: 827–846.
  • Shaukat, S., A. Arshid, A. Eleyan, S. A. Shah, J. Ahmad, et al., 2020 Chaos theory and its application: An essential framework for image encryption. Chaos Theory and Applications 2: 15–20.
  • Sheng, S. and X. Wu, 2012 A new digital anti-counterfeiting scheme based on chaotic cryptography. In 2012 International Conference on ICT Convergence (ICTC), pp. 687–691, IEEE.
  • Stojanovski, T. and L. Kocarev, 2001 Chaos-based random number generators-part i: analysis [cryptography]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48: 281–288.
  • Stoyanov, B., 2013 Pseudo-random bit generator based on chebyshev map. In AIP Conference Proceedings, volume 1561, pp. 369– 372, American Institute of Physics.
  • Stoyanov, B. and T. Ivanova, 2019 Chaosa: Chaotic map based random number generator on arduino platform. In AIP Conference Proceedings, volume 2172, p. 090001, AIP Publishing LLC.
  • Stoyanov, B. and K. Kordov, 2015 Image encryption using chebyshev map and rotation equation. Entropy 17: 2117–2139.
  • Strogatz, S. H., 2018 Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC Press.
  • Ursulean, R., 2004 Reconsidering the generalized logistic map as a pseudo random bit generator. Elektronika ir elektrotechnika 56.
  • Volos, C. K., 2013 Chaotic random bit generator realized with a microcontroller. Journal of Computations & Modelling 3: 115– 136.
  • Volos, C. K., I. Kyprianidis, and I. Stouboulos, 2013a Text encryption scheme realized with a chaotic pseudo-random bit generator. Journal of Engineering Science & Technology Review 6.
  • Volos, C. K., I. M. Kyprianidis, and I. N. Stouboulos, 2013b Image encryption process based on chaotic synchronization phenomena. Signal Processing 93: 1328–1340.
  • Wang, X., Ü. Çavusoglu, S. Kacar, A. Akgul, V.-T. Pham, et al., 2019 S-box based image encryption application using a chaotic system without equilibrium. Applied Sciences 9: 781.
  • Wang, X., L. Liu, and Y. Zhang, 2015 A novel chaotic block image encryption algorithm based on dynamic random growth technique. Optics and Lasers in Engineering 66: 10–18.
  • Wang, X.-Y. and Y.-X. Xie, 2012 A design of pseudo-random bit generator based on single chaotic system. International Journal of Modern Physics C 23: 1250024.
  • Wang, X.-Y., J.-J. Zhang, F.-C. Zhang, and G.-H. Cao, 2019b New chaotical image encryption algorithm based on fisher–yatess scrambling and dna coding. Chinese Physics B 28: 040504.
  • Wang, Y., Z. Liu, J. Ma, and H. He, 2016 A pseudorandom number generator based on piecewise logistic map. Nonlinear Dynamics 83: 2373–2391.
  • Wang, Z., A. Akgul, V.-T. Pham, and S. Jafari, 2017 Chaos-based application of a novel no-equilibrium chaotic system with coexisting attractors. Nonlinear Dynamics 89: 1877–1887.
  • Zhang, J., L. Tian, and H.-M. Tai, 2004 A new watermarking method based on chaotic maps. In 2004 IEEE International Conference on Multimedia and Expo (ICME)(IEEE Cat. No. 04TH8763), volume 2, pp. 939–942, IEEE.
  • Zhao, Y., C. Gao, J. Liu, and S. Dong, 2019 A self-perturbed pseudorandom sequence generator based on hyperchaos. Chaos, Solitons & Fractals: X 4: 100023.
  • Zhou, Y., L. Bao, and C. P. Chen, 2014 A new 1d chaotic system for image encryption. Signal processing 97: 172–182.
  • Zhu, C., G. Wang, and K. Sun, 2018 Improved cryptanalysis and enhancements of an image encryption scheme using combined 1d chaotic maps. Entropy 20: 843.
There are 60 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Lazaros Moysis 0000-0002-5652-2532

Aleksandra Tutueva 0000-0002-9747-1962

Christos K. Volos 0000-0001-8763-7255

Denis Butusov 0000-0002-8941-4220

Project Number MIS-5033021
Publication Date November 30, 2020
Published in Issue Year 2020 Volume: 2 Issue: 2

Cite

APA Moysis, L., Tutueva, A., Volos, C. K., Butusov, D. (2020). A Chaos Based Pseudo-Random Bit Generator Using Multiple Digits Comparison. Chaos Theory and Applications, 2(2), 58-68.

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg