Year 2020,
Volume: 2 Issue: 2, 77 - 89, 30.11.2020
Zeric Njıtacke
,
Théophile Fozin
,
Léandre Kamdjeu Kengne
,
Gervais Leutcho,
Edwige Mache Kengne
Jacques Kengne
References
- Adiyaman, Y., S. Emiroglu, M. K. Ucar, and M. Yildiz, 2020
Dynamical analysis, electronic circuit design and control
application of a different chaotic system. Chaos Theory
and Applications 2: 10–16.
- Bao, B., F. Hu, M. Chen, Q. Xu, and Y. Yu, 2015a Self-excited
and hidden attractors found simultaneously in a modified
chua’s circuit. International Journal of Bifurcation and
Chaos 25: 1550075.
- Bao, B., P. Jiang, H.Wu, and F. Hu, 2015b Complex transient
dynamics in periodically forced memristive chua’s circuit.
Nonlinear Dynamics 79: 2333–2343.
- Bao, B.-C., Q. Xu, H. Bao, and M. Chen, 2016 Extreme multistability
in a memristive circuit. Electronics Letters 52:
1008–1010.
- Chen, M., J. Yu, and B.-C. Bao, 2015 Finding hidden attractors
in improved memristor-based chua’s circuit. Electronics
Letters 51: 462–464.
- Chua, L., M. Komuro, and T. Matsumoto, 1986 The double
scroll family. IEEE transactions on circuits and systems
33: 1072–1118.
- Chua, L. O., 1994 Chua’s circuit 10 years later. International
Journal of Circuit Theory and Applications 22: 279–305.
Chua, L. O., 1998 CNN: A paradigm for complexity, volume 31.
World Scientific.
- Duan, Z., J.Wang, R. Li, and L. Huang, 2007 A generalization
of smooth chua’s equations under lagrange stability.
International Journal of Bifurcation and Chaos 17: 3047–
3059.
- Fonzin Fozin, T., R. Kengne, J. Kengne, K. Srinivasan,
M. Souffo Tagueu, et al., 2019 Control of multistability
in a self-excited memristive hyperchaotic oscillator. International
Journal of Bifurcation and Chaos 29: 1950119.
- Fozin, T. F., G. Leutcho, A. T. Kouanou, G. Tanekou,
R. Kengne, et al., 2019 Multistability control of hysteresis
and parallel bifurcation branches through a linear augmentation
scheme. Zeitschrift für Naturforschung A 75:
11–21.
- Gotthans, T. and J. Petržela, 2015 New class of chaotic systems
with circular equilibrium. Nonlinear Dynamics 81:
1143–1149.
- Gotthans, T., J. C. Sprott, and J. Petrzela, 2016 Simple chaotic
flow with circle and square equilibrium. International
Journal of Bifurcation and Chaos 26: 1650137.
- Hartley, T. T., 1989 The duffing double scroll. In 1989 American
Control Conference, pp. 419–424, IEEE.
- Huang, A., L. Pivka, C.W.Wu, and M. Franz, 1996 Chua’s
equation with cubic nonlinearity. International Journal of
Bifurcation and Chaos 6: 2175–2222.
- Jafari, S., J. Sprott, and S. M. R. H. Golpayegani, 2013 Elementary
quadratic chaotic flows with no equilibria. Physics
Letters A 377: 699–702.
- Kengne, J., 2017 On the dynamics of chua’s oscillator with a
smooth cubic nonlinearity: occurrence of multiple attractors.
Nonlinear Dynamics 87: 363–375.
- Kengne, J., Z. N. Tabekoueng, and H. Fotsin, 2016 Coexistence
of multiple attractors and crisis route to chaos
in autonomous third order duffing–holmes type chaotic
oscillators. Communications in Nonlinear Science and
Numerical Simulation 36: 29–44.
- Kingni, S. T., C. Ainamon, V. K. Tamba, and J. C. OROU, 2020
Directly modulated semiconductor ring lasers: Chaos synchronization
and applications to cryptography communications.
Chaos Theory and Applications 2: 31–39.
- Leonov, G., N. Kuznetsov, and V. Vagaitsev, 2011 Localization
of hidden chua’s attractors. Physics Letters A 375:
2230–2233.
- Leutcho, G. D., S. Jafari, I. I. Hamarash, J. Kengne, Z. T.
Njitacke, et al., 2020 A new megastable nonlinear oscillator
with infinite attractors. Chaos, Solitons & Fractals 134:
109703.
- Lian, K.-Y., P. Liu, T.-S. Chiang, and C.-S. Chiu, 2002 Adaptive
synchronization design for chaotic systems via a
scalar driving signal. IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications 49: 17–
27.
- Matsumoto, T., 1984 A chaotic attractor from chua’s circuit.
IEEE Transactions on Circuits and Systems 31: 1055–1058.
Negou, A. N. and J. Kengne, 2018 Dynamic analysis of a
unique jerk system with a smoothly adjustable symmetry
and nonlinearity: Reversals of period doubling, offset
boosting and coexisting bifurcations. AEU-International
Journal of Electronics and Communications 90: 1–19.
- Njitacke, Z., J. Kengne, T. F. Fozin, B. Leutcha, and H. Fotsin,
2019 Dynamical analysis of a novel 4-neurons based hopfield
neural network: emergences of antimonotonicity
and coexistence of multiple stable states. International
Journal of Dynamics and Control 7: 823–841.
- Njitacke, Z., J. Kengne, and A. N. Negou, 2017 Dynamical
analysis and electronic circuit realization of an equilibrium
free 3d chaotic system with a large number of
coexisting attractors. Optik 130: 356–364.
- Njitacke, Z., J. Kengne, R. W. Tapche, and F. Pelap, 2018
Uncertain destination dynamics of a novel memristive
4d autonomous system. Chaos, Solitons & Fractals 107:
177–185.
- Peng, J., E. Ding, M. Ding, and W. Yang, 1996 Synchronizing
hyperchaos with a scalar transmitted signal. Physical
Review Letters 76: 904.
- Pham, V.-T., S. Jafari, C. Volos, and L. Fortuna, 2019
Simulation and experimental implementation of a line–
equilibrium system without linear term. Chaos, Solitons
& Fractals 120: 213–221.
- Pham, V.-T., S. Jafari, X. Wang, and J. Ma, 2016 A chaotic
system with different shapes of equilibria. International
Journal of Bifurcation and Chaos 26: 1650069.
- Ramírez-Ávila, G. M. and J. A. Gallas, 2010 How similar
is the performance of the cubic and the piecewise-linear
circuits of chua? Physics Letters A 375: 143–148.
- Sharma, P. R., A. Sharma, M. D. Shrimali, and A. Prasad,
2011 Targeting fixed-point solutions in nonlinear oscillators
through linear augmentation. Physical Review E 83:
067201.
- Sharma, P. R., M. D. Shrimali, A. Prasad, and U. Feudel, 2013
Controlling bistability by linear augmentation. Physics
Letters A 377: 2329–2332.
- Sharma, P. R., M. D. Shrimali, A. Prasad, N. V. Kuznetsov,
and G. A. Leonov, 2015 Controlling dynamics of hidden
attractors. International Journal of Bifurcation and Chaos
25: 1550061.
- Sprott, J. C., S. Jafari, A. J. M. Khalaf, and T. Kapitaniak,
2017 Megastability: Coexistence of a countable infinity of
nested attractors in a periodically-forced oscillator with
spatially-periodic damping. The European Physical Journal
Special Topics 226: 1979–1985.
- Tagne, R. M., J. Kengne, and A. N. Negou, 2019 Multistability
and chaotic dynamics of a simple jerk system with a
smoothly tuneable symmetry and nonlinearity. International
Journal of Dynamics and Control 7: 476–495.
- Tsuneda, A., 2005 A gallery of attractors from smooth chua’s
equation. International Journal of Bifurcation and Chaos
15: 1–49.
- Tuna, M., A. Karthikeyan, K. Rajagopal, M. Alcin, and
˙I. Koyuncu, 2019 Hyperjerk multiscroll oscillators with
megastability: Analysis, fpga implementation and a novel
ann-ring-based true random number generator. AEUInternational
Journal of Electronics and Communications
112: 152941.
- Wang, X. and G. Chen, 2012 A chaotic system with only one
stable equilibrium. Communications in Nonlinear Science
and Numerical Simulation 17: 1264–1272.
- Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano,
1985 Determining lyapunov exponents from a time series.
Physica D: Nonlinear Phenomena 16: 285–317.
- Xu, Q., Y. Lin, B. Bao, and M. Chen, 2016 Multiple attractors
in a non-ideal active voltage-controlled memristor based
chua’s circuit. Chaos, Solitons & Fractals 83: 186–200.
- Zhong, G.-Q., 1994 Implementation of chua’s circuit with
a cubic nonlinearity. IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications 41: 934–
941.
- Zhong, G.-Q. and F. Ayrom, 1985 Experimental confirmation
of chaos from chua’s circuit. International journal of
circuit theory and applications 13: 93–98.
Multistability and its Annihilation in the Chua’s Oscillator with Piecewise-Linear Nonlinearity
Year 2020,
Volume: 2 Issue: 2, 77 - 89, 30.11.2020
Zeric Njıtacke
,
Théophile Fozin
,
Léandre Kamdjeu Kengne
,
Gervais Leutcho,
Edwige Mache Kengne
Jacques Kengne
Abstract
This contribution uncovers numerical evidence of hysteric dynamical behaviors for the same set of the circuit parameters of the Chua’s circuit with traditional piecewise-linear nonlinearity. Stationary points
and the symmetry property of the model first forecast the possible evidence of coexisting attractors. Then,
well known nonlinear analysis approach based on the bifurcation diagrams, two-parameter diagrams, phase
portraits, two parameter Lyapunov exponent diagrams, graph of maximum Lyapunov exponents, and attraction basins are exploited to characterize the dynamical behavior of the oscillator including coexisting orbits. Finally, the simultaneous existence of both periodic and chaotic orbits highlighted in the Chua’s oscillator is also annihilated based on linear controller. Numerical findings indicate control method ’s efficacy by combining two periodic routes and one chaotic route with another chaotic route.
References
- Adiyaman, Y., S. Emiroglu, M. K. Ucar, and M. Yildiz, 2020
Dynamical analysis, electronic circuit design and control
application of a different chaotic system. Chaos Theory
and Applications 2: 10–16.
- Bao, B., F. Hu, M. Chen, Q. Xu, and Y. Yu, 2015a Self-excited
and hidden attractors found simultaneously in a modified
chua’s circuit. International Journal of Bifurcation and
Chaos 25: 1550075.
- Bao, B., P. Jiang, H.Wu, and F. Hu, 2015b Complex transient
dynamics in periodically forced memristive chua’s circuit.
Nonlinear Dynamics 79: 2333–2343.
- Bao, B.-C., Q. Xu, H. Bao, and M. Chen, 2016 Extreme multistability
in a memristive circuit. Electronics Letters 52:
1008–1010.
- Chen, M., J. Yu, and B.-C. Bao, 2015 Finding hidden attractors
in improved memristor-based chua’s circuit. Electronics
Letters 51: 462–464.
- Chua, L., M. Komuro, and T. Matsumoto, 1986 The double
scroll family. IEEE transactions on circuits and systems
33: 1072–1118.
- Chua, L. O., 1994 Chua’s circuit 10 years later. International
Journal of Circuit Theory and Applications 22: 279–305.
Chua, L. O., 1998 CNN: A paradigm for complexity, volume 31.
World Scientific.
- Duan, Z., J.Wang, R. Li, and L. Huang, 2007 A generalization
of smooth chua’s equations under lagrange stability.
International Journal of Bifurcation and Chaos 17: 3047–
3059.
- Fonzin Fozin, T., R. Kengne, J. Kengne, K. Srinivasan,
M. Souffo Tagueu, et al., 2019 Control of multistability
in a self-excited memristive hyperchaotic oscillator. International
Journal of Bifurcation and Chaos 29: 1950119.
- Fozin, T. F., G. Leutcho, A. T. Kouanou, G. Tanekou,
R. Kengne, et al., 2019 Multistability control of hysteresis
and parallel bifurcation branches through a linear augmentation
scheme. Zeitschrift für Naturforschung A 75:
11–21.
- Gotthans, T. and J. Petržela, 2015 New class of chaotic systems
with circular equilibrium. Nonlinear Dynamics 81:
1143–1149.
- Gotthans, T., J. C. Sprott, and J. Petrzela, 2016 Simple chaotic
flow with circle and square equilibrium. International
Journal of Bifurcation and Chaos 26: 1650137.
- Hartley, T. T., 1989 The duffing double scroll. In 1989 American
Control Conference, pp. 419–424, IEEE.
- Huang, A., L. Pivka, C.W.Wu, and M. Franz, 1996 Chua’s
equation with cubic nonlinearity. International Journal of
Bifurcation and Chaos 6: 2175–2222.
- Jafari, S., J. Sprott, and S. M. R. H. Golpayegani, 2013 Elementary
quadratic chaotic flows with no equilibria. Physics
Letters A 377: 699–702.
- Kengne, J., 2017 On the dynamics of chua’s oscillator with a
smooth cubic nonlinearity: occurrence of multiple attractors.
Nonlinear Dynamics 87: 363–375.
- Kengne, J., Z. N. Tabekoueng, and H. Fotsin, 2016 Coexistence
of multiple attractors and crisis route to chaos
in autonomous third order duffing–holmes type chaotic
oscillators. Communications in Nonlinear Science and
Numerical Simulation 36: 29–44.
- Kingni, S. T., C. Ainamon, V. K. Tamba, and J. C. OROU, 2020
Directly modulated semiconductor ring lasers: Chaos synchronization
and applications to cryptography communications.
Chaos Theory and Applications 2: 31–39.
- Leonov, G., N. Kuznetsov, and V. Vagaitsev, 2011 Localization
of hidden chua’s attractors. Physics Letters A 375:
2230–2233.
- Leutcho, G. D., S. Jafari, I. I. Hamarash, J. Kengne, Z. T.
Njitacke, et al., 2020 A new megastable nonlinear oscillator
with infinite attractors. Chaos, Solitons & Fractals 134:
109703.
- Lian, K.-Y., P. Liu, T.-S. Chiang, and C.-S. Chiu, 2002 Adaptive
synchronization design for chaotic systems via a
scalar driving signal. IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications 49: 17–
27.
- Matsumoto, T., 1984 A chaotic attractor from chua’s circuit.
IEEE Transactions on Circuits and Systems 31: 1055–1058.
Negou, A. N. and J. Kengne, 2018 Dynamic analysis of a
unique jerk system with a smoothly adjustable symmetry
and nonlinearity: Reversals of period doubling, offset
boosting and coexisting bifurcations. AEU-International
Journal of Electronics and Communications 90: 1–19.
- Njitacke, Z., J. Kengne, T. F. Fozin, B. Leutcha, and H. Fotsin,
2019 Dynamical analysis of a novel 4-neurons based hopfield
neural network: emergences of antimonotonicity
and coexistence of multiple stable states. International
Journal of Dynamics and Control 7: 823–841.
- Njitacke, Z., J. Kengne, and A. N. Negou, 2017 Dynamical
analysis and electronic circuit realization of an equilibrium
free 3d chaotic system with a large number of
coexisting attractors. Optik 130: 356–364.
- Njitacke, Z., J. Kengne, R. W. Tapche, and F. Pelap, 2018
Uncertain destination dynamics of a novel memristive
4d autonomous system. Chaos, Solitons & Fractals 107:
177–185.
- Peng, J., E. Ding, M. Ding, and W. Yang, 1996 Synchronizing
hyperchaos with a scalar transmitted signal. Physical
Review Letters 76: 904.
- Pham, V.-T., S. Jafari, C. Volos, and L. Fortuna, 2019
Simulation and experimental implementation of a line–
equilibrium system without linear term. Chaos, Solitons
& Fractals 120: 213–221.
- Pham, V.-T., S. Jafari, X. Wang, and J. Ma, 2016 A chaotic
system with different shapes of equilibria. International
Journal of Bifurcation and Chaos 26: 1650069.
- Ramírez-Ávila, G. M. and J. A. Gallas, 2010 How similar
is the performance of the cubic and the piecewise-linear
circuits of chua? Physics Letters A 375: 143–148.
- Sharma, P. R., A. Sharma, M. D. Shrimali, and A. Prasad,
2011 Targeting fixed-point solutions in nonlinear oscillators
through linear augmentation. Physical Review E 83:
067201.
- Sharma, P. R., M. D. Shrimali, A. Prasad, and U. Feudel, 2013
Controlling bistability by linear augmentation. Physics
Letters A 377: 2329–2332.
- Sharma, P. R., M. D. Shrimali, A. Prasad, N. V. Kuznetsov,
and G. A. Leonov, 2015 Controlling dynamics of hidden
attractors. International Journal of Bifurcation and Chaos
25: 1550061.
- Sprott, J. C., S. Jafari, A. J. M. Khalaf, and T. Kapitaniak,
2017 Megastability: Coexistence of a countable infinity of
nested attractors in a periodically-forced oscillator with
spatially-periodic damping. The European Physical Journal
Special Topics 226: 1979–1985.
- Tagne, R. M., J. Kengne, and A. N. Negou, 2019 Multistability
and chaotic dynamics of a simple jerk system with a
smoothly tuneable symmetry and nonlinearity. International
Journal of Dynamics and Control 7: 476–495.
- Tsuneda, A., 2005 A gallery of attractors from smooth chua’s
equation. International Journal of Bifurcation and Chaos
15: 1–49.
- Tuna, M., A. Karthikeyan, K. Rajagopal, M. Alcin, and
˙I. Koyuncu, 2019 Hyperjerk multiscroll oscillators with
megastability: Analysis, fpga implementation and a novel
ann-ring-based true random number generator. AEUInternational
Journal of Electronics and Communications
112: 152941.
- Wang, X. and G. Chen, 2012 A chaotic system with only one
stable equilibrium. Communications in Nonlinear Science
and Numerical Simulation 17: 1264–1272.
- Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano,
1985 Determining lyapunov exponents from a time series.
Physica D: Nonlinear Phenomena 16: 285–317.
- Xu, Q., Y. Lin, B. Bao, and M. Chen, 2016 Multiple attractors
in a non-ideal active voltage-controlled memristor based
chua’s circuit. Chaos, Solitons & Fractals 83: 186–200.
- Zhong, G.-Q., 1994 Implementation of chua’s circuit with
a cubic nonlinearity. IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications 41: 934–
941.
- Zhong, G.-Q. and F. Ayrom, 1985 Experimental confirmation
of chaos from chua’s circuit. International journal of
circuit theory and applications 13: 93–98.