In Physics, we have laws that determine the time evolution of a given physical system, depending on its parameters and its initial conditions. When we have multi-stable systems, many attractors coexist so that their basins of attraction might possess fractal or even Wada boundaries in such a way that the prediction becomes more complicated depending on the initial conditions. Chaotic systems typically present fractal basins in phase space. A small uncertainty in the initial conditions gives rise to a certain unpredictability of the final state behavior. The new notion of basin entropy provides a new quantitative way to measure the unpredictability of the final states in basins of attraction. Simple methods from chaos theory can contribute to a better understanding of fundamental questions in physics as well as other scientific disciplines.
Primary Language | English |
---|---|
Subjects | Mathematical Physics |
Journal Section | Editorial |
Authors | |
Publication Date | November 30, 2021 |
Published in Issue | Year 2021 Volume: 3 Issue: 2 |
Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science
The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License