Editorial
BibTex RIS Cite

Unpredictability, Uncertainty and Fractal Structures in Physics

Year 2021, Volume: 3 Issue: 2, 43 - 46, 30.11.2021

Abstract

In Physics, we have laws that determine the time evolution of a given physical system, depending on its parameters and its initial conditions. When we have multi-stable systems, many attractors coexist so that their basins of attraction might possess fractal or even Wada boundaries in such a way that the prediction becomes more complicated depending on the initial conditions. Chaotic systems typically present fractal basins in phase space. A small uncertainty in the initial conditions gives rise to a certain unpredictability of the final state behavior. The new notion of basin entropy provides a new quantitative way to measure the unpredictability of the final states in basins of attraction. Simple methods from chaos theory can contribute to a better understanding of fundamental questions in physics as well as other scientific disciplines.

References

  • Ballentine, L. E., 1970 The statistical interpretation of quantum mechanics. Reviews of Modern Physics 42: 358.
  • Bera, M. N., A. Acín, M. Ku´s, M.W. Mitchell, and M. Lewenstein, 2017 Randomness in quantum mechanics: philosophy, physics and technology. Reports on Progress in Physics 80: 124001.
  • Bernal, J. D., J. M. Seoane, and M. A. F. Sanjuán, 2018 Uncertainty dimension and basin entropy in relativistic chaotic scattering. Physical Review E 97: 042214.
  • Bernal, J. D., J. M. Seoane, J. C. Vallejo, L. Huang, and M. A. F. Sanjuán, 2020 Influence of the gravitational radius on asymptotic behavior of the relativistic sitnikov problem. Physical Review E 102: 042204.
  • Born, M., 1969 Is classical mechanics in fact deterministic? In Physics in my Generation, pp. 78–83, Springer.
  • Daza, A., B. Georgeot, D. Guéry-Odelin, A. Wagemakers, and M. A. F. Sanjuán, 2017a Chaotic dynamics and fractal structures in experiments with cold atoms. Physical Review A 95: 013629.
  • Daza, A., J. O. Shipley, S. R. Dolan, and M. A. F. Sanjuán, 2018aWada structures in a binary black hole system. Physical Review D 98: 084050.
  • Daza, A., A. Wagemakers, B. Georgeot, D. Guéry-Odelin, and M. A. F. Sanjuán, 2016 Basin entropy: a new tool to analyze uncertainty in dynamical systems. Scientific Reports 6: 1–10.
  • Daza, A., A. Wagemakers, B. Georgeot, D. Guéry-Odelin, and M. A. F. Sanjuán, 2018b Basin entropy, a measure of final state unpredictability and its application to the chaotic scattering of cold atoms. In Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives, pp. 9–34, Springer.
  • Daza, A., A.Wagemakers, and M. A. F. Sanjuán, 2017bWada property in systems with delay. Communications in Nonlinear Science and Numerical Simulation 43: 220–226.
  • Daza, A., A.Wagemakers, and M. A. F. Sanjuán, 2018c Ascertaining when a basin is Wada: the merging method. Scientific Reports 8: 1–8.
  • Daza, A., A. Wagemakers, M. A. F. Sanjuán, and J. A. Yorke, 2015 Testing for basins of Wada. Scientific Reports 5: 1–7.
  • Feynman, R. P., R. B. Leighton, and M. L. Sands, 1963 The Feynman Lectures on Physics. Vol. I Mainly Mechanics, Radiation and Heat, volume 1. Addison-Wesley, Reading, Massachusetts.
  • Kennedy, J. and J. A. Yorke, 1991 Basins of Wada. Physica D: Nonlinear Phenomena 51: 213–225.
  • Nieto, A. R., E. E. Zotos, J. M. Seoane, and M. A. F. Sanjuán, 2020 Measuring the transition between nonhyperbolic and hyperbolic regimes in open hamiltonian systems. Nonlinear Dynamics 99: 3029–3039.
  • Nusse, H. E. and J. A. Yorke, 1996Wada basin boundaries and basin cells. Physica D: Nonlinear Phenomena 90: 242– 261.
  • Wagemakers, A., A. Daza, and M. A. F. Sanjuan, 2021 How to detect Wada basins. Discrete and Continuous Dynamical Systems B 26(1): 717–739.
  • Wagemakers, A., A. Daza, and M. A. F. Sanjuán, 2020 The saddle-straddle method to test for Wada basins. Communications in Nonlinear Science and Numerical Simulation 84: 105167.
Year 2021, Volume: 3 Issue: 2, 43 - 46, 30.11.2021

Abstract

References

  • Ballentine, L. E., 1970 The statistical interpretation of quantum mechanics. Reviews of Modern Physics 42: 358.
  • Bera, M. N., A. Acín, M. Ku´s, M.W. Mitchell, and M. Lewenstein, 2017 Randomness in quantum mechanics: philosophy, physics and technology. Reports on Progress in Physics 80: 124001.
  • Bernal, J. D., J. M. Seoane, and M. A. F. Sanjuán, 2018 Uncertainty dimension and basin entropy in relativistic chaotic scattering. Physical Review E 97: 042214.
  • Bernal, J. D., J. M. Seoane, J. C. Vallejo, L. Huang, and M. A. F. Sanjuán, 2020 Influence of the gravitational radius on asymptotic behavior of the relativistic sitnikov problem. Physical Review E 102: 042204.
  • Born, M., 1969 Is classical mechanics in fact deterministic? In Physics in my Generation, pp. 78–83, Springer.
  • Daza, A., B. Georgeot, D. Guéry-Odelin, A. Wagemakers, and M. A. F. Sanjuán, 2017a Chaotic dynamics and fractal structures in experiments with cold atoms. Physical Review A 95: 013629.
  • Daza, A., J. O. Shipley, S. R. Dolan, and M. A. F. Sanjuán, 2018aWada structures in a binary black hole system. Physical Review D 98: 084050.
  • Daza, A., A. Wagemakers, B. Georgeot, D. Guéry-Odelin, and M. A. F. Sanjuán, 2016 Basin entropy: a new tool to analyze uncertainty in dynamical systems. Scientific Reports 6: 1–10.
  • Daza, A., A. Wagemakers, B. Georgeot, D. Guéry-Odelin, and M. A. F. Sanjuán, 2018b Basin entropy, a measure of final state unpredictability and its application to the chaotic scattering of cold atoms. In Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives, pp. 9–34, Springer.
  • Daza, A., A.Wagemakers, and M. A. F. Sanjuán, 2017bWada property in systems with delay. Communications in Nonlinear Science and Numerical Simulation 43: 220–226.
  • Daza, A., A.Wagemakers, and M. A. F. Sanjuán, 2018c Ascertaining when a basin is Wada: the merging method. Scientific Reports 8: 1–8.
  • Daza, A., A. Wagemakers, M. A. F. Sanjuán, and J. A. Yorke, 2015 Testing for basins of Wada. Scientific Reports 5: 1–7.
  • Feynman, R. P., R. B. Leighton, and M. L. Sands, 1963 The Feynman Lectures on Physics. Vol. I Mainly Mechanics, Radiation and Heat, volume 1. Addison-Wesley, Reading, Massachusetts.
  • Kennedy, J. and J. A. Yorke, 1991 Basins of Wada. Physica D: Nonlinear Phenomena 51: 213–225.
  • Nieto, A. R., E. E. Zotos, J. M. Seoane, and M. A. F. Sanjuán, 2020 Measuring the transition between nonhyperbolic and hyperbolic regimes in open hamiltonian systems. Nonlinear Dynamics 99: 3029–3039.
  • Nusse, H. E. and J. A. Yorke, 1996Wada basin boundaries and basin cells. Physica D: Nonlinear Phenomena 90: 242– 261.
  • Wagemakers, A., A. Daza, and M. A. F. Sanjuan, 2021 How to detect Wada basins. Discrete and Continuous Dynamical Systems B 26(1): 717–739.
  • Wagemakers, A., A. Daza, and M. A. F. Sanjuán, 2020 The saddle-straddle method to test for Wada basins. Communications in Nonlinear Science and Numerical Simulation 84: 105167.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Physics
Journal Section Editorial
Authors

Miguel A. F. Sanjuan 0000-0003-3515-0837

Publication Date November 30, 2021
Published in Issue Year 2021 Volume: 3 Issue: 2

Cite

APA Sanjuan, M. A. F. (2021). Unpredictability, Uncertainty and Fractal Structures in Physics. Chaos Theory and Applications, 3(2), 43-46.

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg