Experimental Validation of a Chaotic Jerk Circuit Based True Random Number Generator
Year 2022,
Volume: 4 Issue: 2, 64 - 70, 30.07.2022
R. Chase Harrison
Benjamin K. Rhea
Ariel Oldag
Robert N. Dean
Edmon Perkins
Abstract
A method for true random number generation by directly sampling a high frequency chaotic jerk circuit is explored. A method for determination of the maximum Lyapunov exponent, and thus the maximum bit rate for true random number generation, of the jerk system of interest is shown. The system is tested over a wide range of sampling parameters in order to simulate possible hardware configurations. The system is then implemented in high speed electronics on a small printed circuit board to verify its performance over the chosen parameters. The resulting circuit is well suited for random number generation due to its high dynamic complexity, long term aperiodicity, and extreme sensitivity to initial conditions. This system passes the Dieharder RNG test suite at 3.125 Mbps.
References
- Akhshani, A., A. Akhavan, A. Mobaraki, S.-C. Lim, and Z. Hassan,
2014 Pseudo random number generator based on quantum
chaotic map. Communications in Nonlinear Science and Numerical
Simulation 19: 101–111.
- Balachandran, B., E. Perkins, and T. Fitzgerald, 2015 Response
localization in micro-scale oscillator arrays: influence of cubic
coupling nonlinearities. International Journal of Dynamics and
Control 3: 183–188.
- Bassham III, L. E., A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E.
Smid, et al., 2010 Sp 800-22 rev. 1a. a statistical test suite for random
and pseudorandom number generators for cryptographic applications.
National Institute of Standards & Technology.
- Blaszczyk, M. and R. A. Guinee, 2008 A true random binary sequence
generator based on chaotic circuit. In IET Irish Signals
and Systems Conference (ISSC 2008), pp. 294–299.
- Brown, R. G., D. Eddelbuettel, and D. Bauer, 2013 Dieharder:
A random number test suite. Open Source software library,
under development, URL http://www. phy. duke. edu/˜
rgb/General/dieharder. php .
- Cicek, I., A. E. Pusane, and G. Dundar, 2014 A novel design method
for discrete time chaos based true random number generators.
INTEGRATION, the VLSI journal 47: 38–47.
- Ergun, S. and S. Ozoguz, 2007 A chaos-modulated dual oscillatorbased
truly random number generator. In Circuits and Systems,
2007. ISCAS 2007. IEEE International Symposium on, pp. 2482–
2485, IEEE.
- Guinee, R. A. and M. Blaszczyk, 2009 A novel true random binary
sequence generator based on a chaotic double scroll oscillator
combination with a pseudo random generator for cryptographic
applications. In Internet Technology and Secured Transactions, 2009.
ICITST 2009. International Conference for, pp. 1–6, IEEE.
- Han, M. and Y. Kim, 2017 Unpredictable 16 bits LFSR-based true
random number generator. In SoC Design Conference (ISOCC),
2017 International, pp. 284–285, IEEE.
- Harrison, R. C., B. K. Rhea, A. N. Ramsey, R. N. Dean, and J. E.
Perkins, 2019 A true random number generator based on a
chaotic jerk system. In 2019 SoutheastCon, pp. 1–5, IEEE.
- Harrison, R. C., B. K. Rhea, F. T. Werner, and R. Dean, 2017 A
compact and low power realization of a high frequency chaotic
oscillator. Additional Conferences (Device Packaging, HiTEC,
HiTEN, & CICMT) 2017: 4.
- Harrison, R. C., B. K. Rhea, F. T. Werner, and R. N. Dean, 2016
A 4 MHz chaotic oscillator based on a jerk system. In International
Conference on Applications in Nonlinear Dynamics, pp. 41–51,
Springer.
- Kengne, J., R. L. T. Mogue, T. F. Fozin, and A. N. K. Telem, 2019
Effects of symmetric and asymmetric nonlinearity on the dynamics
of a novel chaotic jerk circuit: Coexisting multiple attractors,
period doubling reversals, crisis, and offset boosting. Chaos,
Solitons & Fractals 121: 63–84.
- Lepik, Ü. and H. Hein, 2005 On response of nonlinear oscillators
with random frequency of excitation. Journal of sound and vibration
288: 275–292.
- Li, C.-Y., T.-Y. Chang, and C.-C. Huang, 2010 A nonlinear PRNG
using digitized logistic map with self-reseeding method. In VLSI
Design Automation and Test (VLSI-DAT), 2010 International Symposium
on, pp. 108–111, IEEE.
- Li, X., M. R. E. U. Shougat, T. Mollik, A. N. Beal, R. N. Dean, et al.,
2021 Stochastic effects on a hopf adaptive frequency oscillator.
Journal of Applied Physics 129: 224901.
- Njitacke, Z., L. K. Kengne, et al., 2017 Antimonotonicity, chaos and
multiple coexisting attractors in a simple hybrid diode-based
jerk circuit. Chaos, Solitons & Fractals 105: 77–91.
- Pareschi, F., G. Scotti, L. Giancane, R. Rovatti, G. Setti, et al., 2009
Power analysis of a chaos-based random number generator for
cryptographic security. In Circuits and Systems, 2009. ISCAS 2009.
IEEE International Symposium on, pp. 2858–2861, IEEE.
- Pareschi, F., G. Setti, and R. Rovatti, 2010 Statistical testing of a
chaos based CMOS true-random number generator. Journal of
Circuits, Systems, and Computers 19: 897–910.
- Perkins, E., 2017 Effects of noise on the frequency response of the
monostable duffing oscillator. Physics Letters A 381: 1009–1013.
- Perkins, E. and B. Balachandran, 2012 Noise-enhanced response of
nonlinear oscillators. Procedia Iutam 5: 59–68.
- Perkins, E. and B. Balachandran, 2015 Effects of phase lag on the
information rate of a bistable duffing oscillator. Physics Letters
A 379: 308–313.
- Perkins, E. and T. Fitzgerald, 2018 Continuation method on cumulant
neglect equations. Journal of Computational and Nonlinear
Dynamics 13.
- Perkins, E., M. Kimura, T. Hikihara, and B. Balachandran, 2016 Effects
of noise on symmetric intrinsic localized modes. Nonlinear
Dynamics 85: 333–341.
- Saito, T. and H. Fujita, 1981 Chaos in a manifold piecewise linear
system. Electronics and Communications in Japan (Part I:
Communications) 64: 9–17.
- Sprott, J. C., 2000 Simple chaotic systems and circuits. American
Journal of Physics 68: 758–763.
- Sprott, J. C., 2010 Elegant chaos: algebraically simple chaotic flows.
World Scientific.
- Sundaresan, S., R. Doss, S. Piramuthu, andW. Zhou, 2015 Secure
tag search in RFID systems using mobile readers. IEEE Transactions
on Dependable and Secure Computing 12: 230–242.
- Tavas, V., A. S. Demirkol, S. Ozoguz, A. Zeki, and A. Toker, 2010
An ADC based random bit generator based on a double scroll
chaotic circuit. Journal of Circuits, Systems, and Computers 19:
1621–1639
- Valtierra, J. L., E. Tlelo-Cuautle, and Á. Rodríguez-Vázquez, 2017 A
switched-capacitor skew-tent map implementation for random number
generation. International Journal of Circuit Theory and Applications 45: 305–315.
- Volos, C. K., 2013 Image encryption scheme based on coupled
chaotic systems. Journal of Applied Mathematics and Bioinformatics
3: 123.
- Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, 1985 Determining
lyapunov exponents from a time series. Physica D:
Nonlinear Phenomena 16: 285–317.
- Yalçin, M. E., 2007 Multi-scroll and hypercube attractors from a
general jerk circuit using josephson junctions. Chaos, Solitons &
Fractals 34: 1659–1666.
Year 2022,
Volume: 4 Issue: 2, 64 - 70, 30.07.2022
R. Chase Harrison
Benjamin K. Rhea
Ariel Oldag
Robert N. Dean
Edmon Perkins
References
- Akhshani, A., A. Akhavan, A. Mobaraki, S.-C. Lim, and Z. Hassan,
2014 Pseudo random number generator based on quantum
chaotic map. Communications in Nonlinear Science and Numerical
Simulation 19: 101–111.
- Balachandran, B., E. Perkins, and T. Fitzgerald, 2015 Response
localization in micro-scale oscillator arrays: influence of cubic
coupling nonlinearities. International Journal of Dynamics and
Control 3: 183–188.
- Bassham III, L. E., A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E.
Smid, et al., 2010 Sp 800-22 rev. 1a. a statistical test suite for random
and pseudorandom number generators for cryptographic applications.
National Institute of Standards & Technology.
- Blaszczyk, M. and R. A. Guinee, 2008 A true random binary sequence
generator based on chaotic circuit. In IET Irish Signals
and Systems Conference (ISSC 2008), pp. 294–299.
- Brown, R. G., D. Eddelbuettel, and D. Bauer, 2013 Dieharder:
A random number test suite. Open Source software library,
under development, URL http://www. phy. duke. edu/˜
rgb/General/dieharder. php .
- Cicek, I., A. E. Pusane, and G. Dundar, 2014 A novel design method
for discrete time chaos based true random number generators.
INTEGRATION, the VLSI journal 47: 38–47.
- Ergun, S. and S. Ozoguz, 2007 A chaos-modulated dual oscillatorbased
truly random number generator. In Circuits and Systems,
2007. ISCAS 2007. IEEE International Symposium on, pp. 2482–
2485, IEEE.
- Guinee, R. A. and M. Blaszczyk, 2009 A novel true random binary
sequence generator based on a chaotic double scroll oscillator
combination with a pseudo random generator for cryptographic
applications. In Internet Technology and Secured Transactions, 2009.
ICITST 2009. International Conference for, pp. 1–6, IEEE.
- Han, M. and Y. Kim, 2017 Unpredictable 16 bits LFSR-based true
random number generator. In SoC Design Conference (ISOCC),
2017 International, pp. 284–285, IEEE.
- Harrison, R. C., B. K. Rhea, A. N. Ramsey, R. N. Dean, and J. E.
Perkins, 2019 A true random number generator based on a
chaotic jerk system. In 2019 SoutheastCon, pp. 1–5, IEEE.
- Harrison, R. C., B. K. Rhea, F. T. Werner, and R. Dean, 2017 A
compact and low power realization of a high frequency chaotic
oscillator. Additional Conferences (Device Packaging, HiTEC,
HiTEN, & CICMT) 2017: 4.
- Harrison, R. C., B. K. Rhea, F. T. Werner, and R. N. Dean, 2016
A 4 MHz chaotic oscillator based on a jerk system. In International
Conference on Applications in Nonlinear Dynamics, pp. 41–51,
Springer.
- Kengne, J., R. L. T. Mogue, T. F. Fozin, and A. N. K. Telem, 2019
Effects of symmetric and asymmetric nonlinearity on the dynamics
of a novel chaotic jerk circuit: Coexisting multiple attractors,
period doubling reversals, crisis, and offset boosting. Chaos,
Solitons & Fractals 121: 63–84.
- Lepik, Ü. and H. Hein, 2005 On response of nonlinear oscillators
with random frequency of excitation. Journal of sound and vibration
288: 275–292.
- Li, C.-Y., T.-Y. Chang, and C.-C. Huang, 2010 A nonlinear PRNG
using digitized logistic map with self-reseeding method. In VLSI
Design Automation and Test (VLSI-DAT), 2010 International Symposium
on, pp. 108–111, IEEE.
- Li, X., M. R. E. U. Shougat, T. Mollik, A. N. Beal, R. N. Dean, et al.,
2021 Stochastic effects on a hopf adaptive frequency oscillator.
Journal of Applied Physics 129: 224901.
- Njitacke, Z., L. K. Kengne, et al., 2017 Antimonotonicity, chaos and
multiple coexisting attractors in a simple hybrid diode-based
jerk circuit. Chaos, Solitons & Fractals 105: 77–91.
- Pareschi, F., G. Scotti, L. Giancane, R. Rovatti, G. Setti, et al., 2009
Power analysis of a chaos-based random number generator for
cryptographic security. In Circuits and Systems, 2009. ISCAS 2009.
IEEE International Symposium on, pp. 2858–2861, IEEE.
- Pareschi, F., G. Setti, and R. Rovatti, 2010 Statistical testing of a
chaos based CMOS true-random number generator. Journal of
Circuits, Systems, and Computers 19: 897–910.
- Perkins, E., 2017 Effects of noise on the frequency response of the
monostable duffing oscillator. Physics Letters A 381: 1009–1013.
- Perkins, E. and B. Balachandran, 2012 Noise-enhanced response of
nonlinear oscillators. Procedia Iutam 5: 59–68.
- Perkins, E. and B. Balachandran, 2015 Effects of phase lag on the
information rate of a bistable duffing oscillator. Physics Letters
A 379: 308–313.
- Perkins, E. and T. Fitzgerald, 2018 Continuation method on cumulant
neglect equations. Journal of Computational and Nonlinear
Dynamics 13.
- Perkins, E., M. Kimura, T. Hikihara, and B. Balachandran, 2016 Effects
of noise on symmetric intrinsic localized modes. Nonlinear
Dynamics 85: 333–341.
- Saito, T. and H. Fujita, 1981 Chaos in a manifold piecewise linear
system. Electronics and Communications in Japan (Part I:
Communications) 64: 9–17.
- Sprott, J. C., 2000 Simple chaotic systems and circuits. American
Journal of Physics 68: 758–763.
- Sprott, J. C., 2010 Elegant chaos: algebraically simple chaotic flows.
World Scientific.
- Sundaresan, S., R. Doss, S. Piramuthu, andW. Zhou, 2015 Secure
tag search in RFID systems using mobile readers. IEEE Transactions
on Dependable and Secure Computing 12: 230–242.
- Tavas, V., A. S. Demirkol, S. Ozoguz, A. Zeki, and A. Toker, 2010
An ADC based random bit generator based on a double scroll
chaotic circuit. Journal of Circuits, Systems, and Computers 19:
1621–1639
- Valtierra, J. L., E. Tlelo-Cuautle, and Á. Rodríguez-Vázquez, 2017 A
switched-capacitor skew-tent map implementation for random number
generation. International Journal of Circuit Theory and Applications 45: 305–315.
- Volos, C. K., 2013 Image encryption scheme based on coupled
chaotic systems. Journal of Applied Mathematics and Bioinformatics
3: 123.
- Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, 1985 Determining
lyapunov exponents from a time series. Physica D:
Nonlinear Phenomena 16: 285–317.
- Yalçin, M. E., 2007 Multi-scroll and hypercube attractors from a
general jerk circuit using josephson junctions. Chaos, Solitons &
Fractals 34: 1659–1666.