Analysis of the Dynamics of a $\phi^{6}$ Duffing Type Jerk System
Year 2024,
Volume: 6 Issue: 2, 83 - 89, 30.06.2024
Alejandro Bucio
,
Eduardo Salvador Tututi-hernández
Ulises Uriostegui-legorreta
Abstract
A theoretically and numerically analysis on Duffing Jerk systems with a sixth-order type potential and a sixth-order potential smoothed by a gaussian function are carried out in this work. The Jerk is transformed into a dynamical system of dimension three. The dynamics and stability of the resulting system are analyzed, through phase space, bifurcation diagrams and Lyapunov exponents by varying the relevant parameters, finding the existence of a strange attractor. The dynamics of system with potential smoothed was studied by varying the smoothing parameter $\alpha$, finding that this parameter can be used to controlling chaos, since the exponential factor keeps the same fixed points and it regulates smoothly the amplitude of the potential.
Ethical Statement
Not applicable
Supporting Institution
Consejo Nacional de Humanidades Ciencias y Tecnologías (CONAHCYT)
Thanks
Thanks to the Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) and its postgraduate program in Ciencias en Ingeniería Física, as well as the Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT).
References
- Chen, D. and Y. Zhang, 2016 Minimum jerk norm scheme applied
to obstacle avoidance of redundant robot arm with jerk bounded
and feedback control. IET Control Theory & Applications 10:
1896–1903.
- Folifack Signing, V., T. Fozin Fonzin, and M. Kountchou, 2021
Chaotic jerk system with hump structure for text and image
encryption using dna coding. Circuits, Systems, and Signal Processing
40: 4370–4406.
- Francomano, E., F. M. Hilker, M. Paliaga, and E. Venturino, 2017
An efficient method to reconstruct invariant manifolds of saddle
points. Dolomites Research Notes on Approximation 10.
- Haluszczynski, A. and C. Räth, 2021 Controlling nonlinear dynamical
systems into arbitrary states using machine learning.
Scientific reports 11: 12991.
- Hilborn, R. C. et al., 2000 Chaos and nonlinear dynamics: an introduction
for scientists and engineers. Oxford University Press on
Demand.
- Hong, L., J. Jiang, and J.-Q. Sun, 2015 Fuzzy responses and bifurcations
of a forced duffing oscillator with a triple-well potential.
International Journal of Bifurcation and Chaos 25: 1550005.
- Kengne, L. K., H. K. Tagne, J. M. Pone, and J. Kengne, 2020 Dynamics,
control and symmetry-breaking aspects of a new chaotic jerk
system and its circuit implementation. The European Physical
Journal Plus 135: 340.
- Louodop, P., M. Kountchou, H. Fotsin, and S. Bowong, 2014 Practical
finite-time synchronization of jerk systems: theory and
experiment. Nonlinear Dynamics 78: 597–607.
- Louodop, P., S. Saha, R. Tchitnga, P. Muruganandam, S. K. Dana,
et al., 2017 Coherent motion of chaotic attractors. Physical Review
E 96: 042210.
- Natiq, H., S. Banerjee, and M. Said, 2019 Cosine chaotification
technique to enhance chaos and complexity of discrete systems.
The European Physical Journal Special Topics 228: 185–194.
- Njitacke, Z. T., C. Feudjio, V. F. Signing, B. N. Koumetio, N. Tsafack,
et al., 2022 Circuit and microcontroller validation of the extreme
multistable dynamics of a memristive jerk system: application
to image encryption. The European Physical Journal Plus 137:
619.
- Patidar, V. and K. Sud, 2005 Bifurcation and chaos in simple jerk
dynamical systems. Pramana 64: 75–93.
- Posch, H. A., W. G. Hoover, and F. J. Vesely, 1986 Canonical dynamics
of the nosé oscillator: Stability, order, and chaos. Physical
review A 33: 4253.
- Raineri, M. and C. G. L. Bianco, 2019 Jerk limited planner for
real-time applications requiring variable velocity bounds. In
2019 IEEE 15th International Conference on Automation Science and
Engineering (CASE), pp. 1611–1617, IEEE.
- Sandri, M., 1996 Numerical calculation of lyapunov exponents.
Mathematica Journal 6: 78–84.
- Sharker, S. I., S. Holekamp, M. M. Mansoor, F. E. Fish, and T. T.
Truscott, 2019 Water entry impact dynamics of diving birds.
Bioinspiration & biomimetics 14: 056013.
- Sprott, J. C., 2011 A new chaotic jerk circuit. IEEE Transactions on
Circuits and Systems II: Express Briefs 58: 240–243.
- Stumpf, P. P., Z. Süt˝o, and I. Nagy, 2011 Research in nonlinear
dynamics triggered by r&d experiences .
- Uriostegui, U. and E. S. Tututi, 2023 Master-slave synchronization
in the van der Pol and duffing systems via elastic, dissipative and
a combination of both couplings. Journal of Applied Research
and Technology 21: 227–240.
- Uriostegui-Legorreta, U. and E. Tututi, 2023a Control and synchronization
in the Duffing-van der Pol and Φ6 duffing oscillators.
Indian Journal of Physics pp. 1–13.
- Uriostegui-Legorreta, U. and E. S. Tututi, 2023b Master-slave synchronization
in the Duffing-van der Pol and Φ6 duffing oscillators.
International Journal of Nonlinear Sciences and Numerical
Simulation 24: 1059–1072.
- Uriostegui-Legorreta, U. and E. S. Tututi-Hernández, 2022 Masterslave
synchronization in the rayleigh and duffing oscillators via
elastic and dissipative couplings. Revista de ciencias tecnológicas
5.
- Vaidyanathan, S., A. Sambas, M. Mamat, and M. S. WS, 2017 Analysis,
synchronisation and circuit implementation of a novel jerk
chaotic system and its application for voice encryption. International
Journal of Modelling, Identification and Control 28:
153–166.
- Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, 1985 Determining
lyapunov exponents from a time series. Physica D:
nonlinear phenomena 16: 285–317.
- Zhang, H., D. Liu, and Z. Wang, 2009 Chaotification of nonchaotic
systems. Controlling Chaos: Suppression, Synchronization and
Chaotification pp. 309–341.
- Zhou, J., D. Xu, and Y. Li, 2010 Chaotifing duffing-type system with
large parameter range based on optimal time-delay feedback
control. In 2010 International workshop on chaos-fractal theories and
applications, pp. 121–126, IEEE.
Year 2024,
Volume: 6 Issue: 2, 83 - 89, 30.06.2024
Alejandro Bucio
,
Eduardo Salvador Tututi-hernández
Ulises Uriostegui-legorreta
References
- Chen, D. and Y. Zhang, 2016 Minimum jerk norm scheme applied
to obstacle avoidance of redundant robot arm with jerk bounded
and feedback control. IET Control Theory & Applications 10:
1896–1903.
- Folifack Signing, V., T. Fozin Fonzin, and M. Kountchou, 2021
Chaotic jerk system with hump structure for text and image
encryption using dna coding. Circuits, Systems, and Signal Processing
40: 4370–4406.
- Francomano, E., F. M. Hilker, M. Paliaga, and E. Venturino, 2017
An efficient method to reconstruct invariant manifolds of saddle
points. Dolomites Research Notes on Approximation 10.
- Haluszczynski, A. and C. Räth, 2021 Controlling nonlinear dynamical
systems into arbitrary states using machine learning.
Scientific reports 11: 12991.
- Hilborn, R. C. et al., 2000 Chaos and nonlinear dynamics: an introduction
for scientists and engineers. Oxford University Press on
Demand.
- Hong, L., J. Jiang, and J.-Q. Sun, 2015 Fuzzy responses and bifurcations
of a forced duffing oscillator with a triple-well potential.
International Journal of Bifurcation and Chaos 25: 1550005.
- Kengne, L. K., H. K. Tagne, J. M. Pone, and J. Kengne, 2020 Dynamics,
control and symmetry-breaking aspects of a new chaotic jerk
system and its circuit implementation. The European Physical
Journal Plus 135: 340.
- Louodop, P., M. Kountchou, H. Fotsin, and S. Bowong, 2014 Practical
finite-time synchronization of jerk systems: theory and
experiment. Nonlinear Dynamics 78: 597–607.
- Louodop, P., S. Saha, R. Tchitnga, P. Muruganandam, S. K. Dana,
et al., 2017 Coherent motion of chaotic attractors. Physical Review
E 96: 042210.
- Natiq, H., S. Banerjee, and M. Said, 2019 Cosine chaotification
technique to enhance chaos and complexity of discrete systems.
The European Physical Journal Special Topics 228: 185–194.
- Njitacke, Z. T., C. Feudjio, V. F. Signing, B. N. Koumetio, N. Tsafack,
et al., 2022 Circuit and microcontroller validation of the extreme
multistable dynamics of a memristive jerk system: application
to image encryption. The European Physical Journal Plus 137:
619.
- Patidar, V. and K. Sud, 2005 Bifurcation and chaos in simple jerk
dynamical systems. Pramana 64: 75–93.
- Posch, H. A., W. G. Hoover, and F. J. Vesely, 1986 Canonical dynamics
of the nosé oscillator: Stability, order, and chaos. Physical
review A 33: 4253.
- Raineri, M. and C. G. L. Bianco, 2019 Jerk limited planner for
real-time applications requiring variable velocity bounds. In
2019 IEEE 15th International Conference on Automation Science and
Engineering (CASE), pp. 1611–1617, IEEE.
- Sandri, M., 1996 Numerical calculation of lyapunov exponents.
Mathematica Journal 6: 78–84.
- Sharker, S. I., S. Holekamp, M. M. Mansoor, F. E. Fish, and T. T.
Truscott, 2019 Water entry impact dynamics of diving birds.
Bioinspiration & biomimetics 14: 056013.
- Sprott, J. C., 2011 A new chaotic jerk circuit. IEEE Transactions on
Circuits and Systems II: Express Briefs 58: 240–243.
- Stumpf, P. P., Z. Süt˝o, and I. Nagy, 2011 Research in nonlinear
dynamics triggered by r&d experiences .
- Uriostegui, U. and E. S. Tututi, 2023 Master-slave synchronization
in the van der Pol and duffing systems via elastic, dissipative and
a combination of both couplings. Journal of Applied Research
and Technology 21: 227–240.
- Uriostegui-Legorreta, U. and E. Tututi, 2023a Control and synchronization
in the Duffing-van der Pol and Φ6 duffing oscillators.
Indian Journal of Physics pp. 1–13.
- Uriostegui-Legorreta, U. and E. S. Tututi, 2023b Master-slave synchronization
in the Duffing-van der Pol and Φ6 duffing oscillators.
International Journal of Nonlinear Sciences and Numerical
Simulation 24: 1059–1072.
- Uriostegui-Legorreta, U. and E. S. Tututi-Hernández, 2022 Masterslave
synchronization in the rayleigh and duffing oscillators via
elastic and dissipative couplings. Revista de ciencias tecnológicas
5.
- Vaidyanathan, S., A. Sambas, M. Mamat, and M. S. WS, 2017 Analysis,
synchronisation and circuit implementation of a novel jerk
chaotic system and its application for voice encryption. International
Journal of Modelling, Identification and Control 28:
153–166.
- Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, 1985 Determining
lyapunov exponents from a time series. Physica D:
nonlinear phenomena 16: 285–317.
- Zhang, H., D. Liu, and Z. Wang, 2009 Chaotification of nonchaotic
systems. Controlling Chaos: Suppression, Synchronization and
Chaotification pp. 309–341.
- Zhou, J., D. Xu, and Y. Li, 2010 Chaotifing duffing-type system with
large parameter range based on optimal time-delay feedback
control. In 2010 International workshop on chaos-fractal theories and
applications, pp. 121–126, IEEE.