Research Article
BibTex RIS Cite

Analysis of the Dynamics of a $\phi^{6}$ Duffing Type Jerk System

Year 2024, Volume: 6 Issue: 2, 83 - 89, 30.06.2024
https://doi.org/10.51537/chaos.1376471

Abstract

A theoretically and numerically analysis on Duffing Jerk systems with a sixth-order type potential and a sixth-order potential smoothed by a gaussian function are carried out in this work. The Jerk is transformed into a dynamical system of dimension three. The dynamics and stability of the resulting system are analyzed, through phase space, bifurcation diagrams and Lyapunov exponents by varying the relevant parameters, finding the existence of a strange attractor. The dynamics of system with potential smoothed was studied by varying the smoothing parameter $\alpha$, finding that this parameter can be used to controlling chaos, since the exponential factor keeps the same fixed points and it regulates smoothly the amplitude of the potential.

Ethical Statement

Not applicable

Supporting Institution

Consejo Nacional de Humanidades Ciencias y Tecnologías (CONAHCYT)

Thanks

Thanks to the Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) and its postgraduate program in Ciencias en Ingeniería Física, as well as the Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT).

References

  • Chen, D. and Y. Zhang, 2016 Minimum jerk norm scheme applied to obstacle avoidance of redundant robot arm with jerk bounded and feedback control. IET Control Theory & Applications 10: 1896–1903.
  • Folifack Signing, V., T. Fozin Fonzin, and M. Kountchou, 2021 Chaotic jerk system with hump structure for text and image encryption using dna coding. Circuits, Systems, and Signal Processing 40: 4370–4406.
  • Francomano, E., F. M. Hilker, M. Paliaga, and E. Venturino, 2017 An efficient method to reconstruct invariant manifolds of saddle points. Dolomites Research Notes on Approximation 10.
  • Haluszczynski, A. and C. Räth, 2021 Controlling nonlinear dynamical systems into arbitrary states using machine learning. Scientific reports 11: 12991.
  • Hilborn, R. C. et al., 2000 Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press on Demand.
  • Hong, L., J. Jiang, and J.-Q. Sun, 2015 Fuzzy responses and bifurcations of a forced duffing oscillator with a triple-well potential. International Journal of Bifurcation and Chaos 25: 1550005.
  • Kengne, L. K., H. K. Tagne, J. M. Pone, and J. Kengne, 2020 Dynamics, control and symmetry-breaking aspects of a new chaotic jerk system and its circuit implementation. The European Physical Journal Plus 135: 340.
  • Louodop, P., M. Kountchou, H. Fotsin, and S. Bowong, 2014 Practical finite-time synchronization of jerk systems: theory and experiment. Nonlinear Dynamics 78: 597–607.
  • Louodop, P., S. Saha, R. Tchitnga, P. Muruganandam, S. K. Dana, et al., 2017 Coherent motion of chaotic attractors. Physical Review E 96: 042210.
  • Natiq, H., S. Banerjee, and M. Said, 2019 Cosine chaotification technique to enhance chaos and complexity of discrete systems. The European Physical Journal Special Topics 228: 185–194.
  • Njitacke, Z. T., C. Feudjio, V. F. Signing, B. N. Koumetio, N. Tsafack, et al., 2022 Circuit and microcontroller validation of the extreme multistable dynamics of a memristive jerk system: application to image encryption. The European Physical Journal Plus 137: 619.
  • Patidar, V. and K. Sud, 2005 Bifurcation and chaos in simple jerk dynamical systems. Pramana 64: 75–93.
  • Posch, H. A., W. G. Hoover, and F. J. Vesely, 1986 Canonical dynamics of the nosé oscillator: Stability, order, and chaos. Physical review A 33: 4253.
  • Raineri, M. and C. G. L. Bianco, 2019 Jerk limited planner for real-time applications requiring variable velocity bounds. In 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), pp. 1611–1617, IEEE.
  • Sandri, M., 1996 Numerical calculation of lyapunov exponents. Mathematica Journal 6: 78–84.
  • Sharker, S. I., S. Holekamp, M. M. Mansoor, F. E. Fish, and T. T. Truscott, 2019 Water entry impact dynamics of diving birds. Bioinspiration & biomimetics 14: 056013.
  • Sprott, J. C., 2011 A new chaotic jerk circuit. IEEE Transactions on Circuits and Systems II: Express Briefs 58: 240–243.
  • Stumpf, P. P., Z. Süt˝o, and I. Nagy, 2011 Research in nonlinear dynamics triggered by r&d experiences .
  • Uriostegui, U. and E. S. Tututi, 2023 Master-slave synchronization in the van der Pol and duffing systems via elastic, dissipative and a combination of both couplings. Journal of Applied Research and Technology 21: 227–240.
  • Uriostegui-Legorreta, U. and E. Tututi, 2023a Control and synchronization in the Duffing-van der Pol and Φ6 duffing oscillators. Indian Journal of Physics pp. 1–13.
  • Uriostegui-Legorreta, U. and E. S. Tututi, 2023b Master-slave synchronization in the Duffing-van der Pol and Φ6 duffing oscillators. International Journal of Nonlinear Sciences and Numerical Simulation 24: 1059–1072.
  • Uriostegui-Legorreta, U. and E. S. Tututi-Hernández, 2022 Masterslave synchronization in the rayleigh and duffing oscillators via elastic and dissipative couplings. Revista de ciencias tecnológicas 5.
  • Vaidyanathan, S., A. Sambas, M. Mamat, and M. S. WS, 2017 Analysis, synchronisation and circuit implementation of a novel jerk chaotic system and its application for voice encryption. International Journal of Modelling, Identification and Control 28: 153–166.
  • Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, 1985 Determining lyapunov exponents from a time series. Physica D: nonlinear phenomena 16: 285–317.
  • Zhang, H., D. Liu, and Z. Wang, 2009 Chaotification of nonchaotic systems. Controlling Chaos: Suppression, Synchronization and Chaotification pp. 309–341.
  • Zhou, J., D. Xu, and Y. Li, 2010 Chaotifing duffing-type system with large parameter range based on optimal time-delay feedback control. In 2010 International workshop on chaos-fractal theories and applications, pp. 121–126, IEEE.
Year 2024, Volume: 6 Issue: 2, 83 - 89, 30.06.2024
https://doi.org/10.51537/chaos.1376471

Abstract

References

  • Chen, D. and Y. Zhang, 2016 Minimum jerk norm scheme applied to obstacle avoidance of redundant robot arm with jerk bounded and feedback control. IET Control Theory & Applications 10: 1896–1903.
  • Folifack Signing, V., T. Fozin Fonzin, and M. Kountchou, 2021 Chaotic jerk system with hump structure for text and image encryption using dna coding. Circuits, Systems, and Signal Processing 40: 4370–4406.
  • Francomano, E., F. M. Hilker, M. Paliaga, and E. Venturino, 2017 An efficient method to reconstruct invariant manifolds of saddle points. Dolomites Research Notes on Approximation 10.
  • Haluszczynski, A. and C. Räth, 2021 Controlling nonlinear dynamical systems into arbitrary states using machine learning. Scientific reports 11: 12991.
  • Hilborn, R. C. et al., 2000 Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press on Demand.
  • Hong, L., J. Jiang, and J.-Q. Sun, 2015 Fuzzy responses and bifurcations of a forced duffing oscillator with a triple-well potential. International Journal of Bifurcation and Chaos 25: 1550005.
  • Kengne, L. K., H. K. Tagne, J. M. Pone, and J. Kengne, 2020 Dynamics, control and symmetry-breaking aspects of a new chaotic jerk system and its circuit implementation. The European Physical Journal Plus 135: 340.
  • Louodop, P., M. Kountchou, H. Fotsin, and S. Bowong, 2014 Practical finite-time synchronization of jerk systems: theory and experiment. Nonlinear Dynamics 78: 597–607.
  • Louodop, P., S. Saha, R. Tchitnga, P. Muruganandam, S. K. Dana, et al., 2017 Coherent motion of chaotic attractors. Physical Review E 96: 042210.
  • Natiq, H., S. Banerjee, and M. Said, 2019 Cosine chaotification technique to enhance chaos and complexity of discrete systems. The European Physical Journal Special Topics 228: 185–194.
  • Njitacke, Z. T., C. Feudjio, V. F. Signing, B. N. Koumetio, N. Tsafack, et al., 2022 Circuit and microcontroller validation of the extreme multistable dynamics of a memristive jerk system: application to image encryption. The European Physical Journal Plus 137: 619.
  • Patidar, V. and K. Sud, 2005 Bifurcation and chaos in simple jerk dynamical systems. Pramana 64: 75–93.
  • Posch, H. A., W. G. Hoover, and F. J. Vesely, 1986 Canonical dynamics of the nosé oscillator: Stability, order, and chaos. Physical review A 33: 4253.
  • Raineri, M. and C. G. L. Bianco, 2019 Jerk limited planner for real-time applications requiring variable velocity bounds. In 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), pp. 1611–1617, IEEE.
  • Sandri, M., 1996 Numerical calculation of lyapunov exponents. Mathematica Journal 6: 78–84.
  • Sharker, S. I., S. Holekamp, M. M. Mansoor, F. E. Fish, and T. T. Truscott, 2019 Water entry impact dynamics of diving birds. Bioinspiration & biomimetics 14: 056013.
  • Sprott, J. C., 2011 A new chaotic jerk circuit. IEEE Transactions on Circuits and Systems II: Express Briefs 58: 240–243.
  • Stumpf, P. P., Z. Süt˝o, and I. Nagy, 2011 Research in nonlinear dynamics triggered by r&d experiences .
  • Uriostegui, U. and E. S. Tututi, 2023 Master-slave synchronization in the van der Pol and duffing systems via elastic, dissipative and a combination of both couplings. Journal of Applied Research and Technology 21: 227–240.
  • Uriostegui-Legorreta, U. and E. Tututi, 2023a Control and synchronization in the Duffing-van der Pol and Φ6 duffing oscillators. Indian Journal of Physics pp. 1–13.
  • Uriostegui-Legorreta, U. and E. S. Tututi, 2023b Master-slave synchronization in the Duffing-van der Pol and Φ6 duffing oscillators. International Journal of Nonlinear Sciences and Numerical Simulation 24: 1059–1072.
  • Uriostegui-Legorreta, U. and E. S. Tututi-Hernández, 2022 Masterslave synchronization in the rayleigh and duffing oscillators via elastic and dissipative couplings. Revista de ciencias tecnológicas 5.
  • Vaidyanathan, S., A. Sambas, M. Mamat, and M. S. WS, 2017 Analysis, synchronisation and circuit implementation of a novel jerk chaotic system and its application for voice encryption. International Journal of Modelling, Identification and Control 28: 153–166.
  • Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, 1985 Determining lyapunov exponents from a time series. Physica D: nonlinear phenomena 16: 285–317.
  • Zhang, H., D. Liu, and Z. Wang, 2009 Chaotification of nonchaotic systems. Controlling Chaos: Suppression, Synchronization and Chaotification pp. 309–341.
  • Zhou, J., D. Xu, and Y. Li, 2010 Chaotifing duffing-type system with large parameter range based on optimal time-delay feedback control. In 2010 International workshop on chaos-fractal theories and applications, pp. 121–126, IEEE.
There are 26 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other), Numerical Modelling and Mechanical Characterisation
Journal Section Research Articles
Authors

Alejandro Bucio 0009-0000-3295-4157

Eduardo Salvador Tututi-hernández This is me 0000-0002-0126-6615

Ulises Uriostegui-legorreta This is me 0000-0001-9905-6060

Early Pub Date June 19, 2024
Publication Date June 30, 2024
Submission Date October 16, 2023
Acceptance Date December 1, 2023
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

APA Bucio, A., Tututi-hernández, E. S., & Uriostegui-legorreta, U. (2024). Analysis of the Dynamics of a $\phi^{6}$ Duffing Type Jerk System. Chaos Theory and Applications, 6(2), 83-89. https://doi.org/10.51537/chaos.1376471

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg