This publication investigates the performance of demodulation methods utilized in spread spectrum chaotic communication systems in order to understand conditions at which advanced demodulation methods, such as chaotic synchronization, provide tangible benefits over classical, matched filtering-based approaches. We conduct simulations and comparisons of three different communication systems: classic direct sequence spread spectrum (DSSS), chaotic signal fragment-based pseudo-chaotic spread spectrum (PCSS), and chaotic synchronization-based antipodal chaos shift keying (ACSK). These systems possess similar spectral and time domain characteristics, allowing us to shed light on their fundamental differences and limitations in chaos-based communication. Additionally, we assess the impact of frequency modulation (FM) on these modulation methods, as FM allows the creation of simplified non-coherent modulation schemes. Our findings, based on the analysis of bit error ratio (BER) curves, demonstrate that in the case of a non-dispersive communication channel, the utilization of chaotic synchronization does not allow to achieve performance of correlation-based receivers. Additionally, the utilization of chaotic synchronization for multiple access poses certain challenges due to malicious synchronization between users. As a supplementary finding, we show that in systems with matched filter-based demodulation, discrete-time quantized spreading sequences confer an advantage over analogous, continuous-time spreading waveforms.
Spread spectrum communication Chaotic communication Chaos Multiple access interference Correlation Chaotic synchronization
Riga Technical University
Primary Language | English |
---|---|
Subjects | Software Engineering (Other), Circuits and Systems |
Journal Section | Research Articles |
Authors | |
Publication Date | July 31, 2024 |
Submission Date | January 23, 2024 |
Acceptance Date | April 5, 2024 |
Published in Issue | Year 2024 Volume: 6 Issue: 3 |
Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science
The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License