Research Article
BibTex RIS Cite

Year 2025, Volume: 7 Issue: 3, 186 - 196
https://doi.org/10.51537/chaos.1650994

Abstract

References

  • Abdeljawad, T., 2011 On riemann and caputo fractional differences. Comput. Math. Appl. 62: 1602–1611.
  • Benabdeseelam, A., M. Messadi, K. Kemih, et al., 2025 Chatteringfree terminal sliding mode control based on adaptive exponential reaching barrier function for a chaotic permanent magnet synchronous generator in offshore wind turbine system. Chinese Physics B .
  • Chen, G. and X. Dong, 1998 From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific.
  • Debeljkovic, D. L. and C. M. Aleksendri´c, 2002 Lyapunov and nonlyapunov stability of linear discrete time delay systems. Facta Universitatis, Series: Mechanical Engineering 1: 1147–1160.
  • Debeljkovic, D. L. and S. Stojanovic, 2010 The stability of linear discrete-time delay systems in the sense of lyapunov: an overview. Scientific Technical Review 60: 67–81.
  • Dmitriev, A. S., G. A. Kassian, and A. D. Khilinsky, 2002 Chaotic synchronization of hénon mappings: The information approach. Technical Physics Letters 51.
  • Feki, M., B. Robert, G. Gelle, and M. Colas, 2003 Secure digital communication using discrete-time chaos synchronization. Chaos, Solitons and Fractals 18: 881–890.
  • Fotsa, R. T., P. K. K. Papemsi, G. P. A. Kuete, J. R. M. Pone, S. R. D. Naoussi, et al., 2025 Permanent magnet synchronous motor with load torque: dynamics, circuitry execution and control. Chaos and Fractals 2: 14–19.
  • Guo, F., J. Xie, and Y. Yue, 2014 Chaos control of lozi mapping. Applied Mechanics and Materials 509: 231–235.
  • Hamiche, H., S. Kassim, S. Djennoune, S. Guermah, M. Lahdir, et al., 2015 Secure data transmission scheme based on fractionalorder discrete chaotic system. In International Conference on Control, Engineering and Information Technology (CEIT’2015), Tlemcen, Algeria.
  • Hamiche, H., O. Megherbi, K. Kemih, R. Kara, and A. Ouslimani, 2024 A new synchronization result for fractional-order discretetime chaotic systems via bandlimited channels. Physica Scripta 99.
  • Hamiche, H., H. Takhi, M. Messadi, K. Kemih, O. Megherbi, et al., 2021 New synchronization results for a class of nonlinear discrete-time chaotic systems based on synergetic observer and their implementation. Mathematics and Computers in Simulation 185: 194–217.
  • Hosbas, M. Z., B. Emin, and F. Kaçar, 2025 True random number generator design with a fractional order sprott b chaotic system. ADBA Computer Science 2: 50–55.
  • Huang, Y. Y., H. Huang, Y. Huang, Y.Wang, F. Yu, et al., 2014 Shape synchronization of drive-response for a class of two-dimensional chaotic systems via continuous controllers. Nonlinear Dynamics 78: 2331–2340.
  • Huang, Y. Y., H. Huang, Y. Huang, Y.Wang, F. Yu, et al., 2016 Shape synchronization control for three-dimensional chaotic systems. Chaos Solitons and Fractals 7: 136–145.
  • Huang, Y. Y., H. Huang, Y. Huang, Y. Wang, F. Yu, et al., 2024 Drive-response asymptotic shape synchronization for a class of two dimensional chaotic systems and its application in image encryption. Physica D 463.
  • Jovic, B., 2011 Synchronization techniques for chaotic communication systems. Springer.
  • Kassim, S., O. Megherbi, H. Hamiche, S. Djennoune, and M. Bettayeb, 2019 Speech encryption based on the synchronization of fractional-order chaotic maps. In IEEE 19th International Symposium on Signal Processing and Information Technology (ISSPIT), Sharjah, United Arab Emirates.
  • Kilbas, A. A., H. M. Srivastava, and J. J. Trujillo, 2006 Theory and Application of Fractional Differential Equations. North Holland Mathematics Studies.
  • Kıran, H. E., 2024 A novel chaos-based encryption technique with parallel processing using cuda for mobile powerful gpu control center. Chaos and Fractals 1: 6–18.
  • Liao, X., Z. Gao, and H. Huang, 2013 Synchronization control of fractional-order discrete-time chaotic systems. In European Control Conference (ECC), Zurich, Switzerland.
  • Lissan, D. J., S. Oumarou, B. R. N. Nbendjo, et al., 2025 Suppression of catastrophic motion and horseshoes chaos on a mechanical structure using opto-electromechanicals devices. Chaos Theory and Applications 7: 42–49.
  • Liu, J. M. and L. S. Tsimring, 2006 Digital communications using chaos and nonlinear dynamics. Springer.
  • Liu, Y., 2014 Discrete chaos in fractional hénon maps. International Journal of Nonlinear Science 18: 170–175.
  • Martinez-Guerra, R., C. A. Pérez-Pinacho, and G. C. Gomez-Cortés, 2015 Synchronization of integral and fractional order chaotic systems. Springer.
  • Megherbi, O., S. Kassim, H. Hamiche, M. Bettayeb, and J. P. Barbot, 2017 Robust image transmission scheme based on coupled fractional-order chaotic maps. In SIAM Conference on Control and Its Applications, pp. 54–61, United States of America.
  • Messadi, M., K. Kemih, and H. Hamiche, 2023 A new secure communications scheme based on a synchronisation of hybrid chaotic system. Chaos Theory and Applications 5: 160–166.
  • Messadi, M., A. Mellit, K. Kemih, et al., 2014 Cgpc control of chaos in a permanent magnet synchronous motor using the gradient conjugate and the genetic algorithm. Nonlinear Phenomena in Complex Systems 17: 183–187.
  • Messadi, M., A. Mellit, K. Kemih, et al., 2015 Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system. Chinese Physics B 24: 010502.
  • Mistuwicz, M., 1980 Strange attractor for the lozi-mapping in nonlinear dynamics. Annals of the New York Academy of Sciences 357: 348–358.
  • Monje, C. A., Y. Q. Chen, B. M. Vinagre, D. Xue, and V. Feliu, 2010 Fractional-Order Systems and Control: Fundamentals and Applications. Springer, Berlin.
  • Nijmeijer, H. and I. M. Y. Mareels, 1997 An observer looks at synchronization. IEEE Trans. Circuits Syst: Fundam. Theory Appl. 44: 10.
  • Núñez-López, J. A., D. M. Garcia, O. Sergiyenko, et al., 2025 Modeling and analysis of nonlinear chaotic mechanical dynamics in laser scanning systems. Chaos Theory and Applications 7: 125–137.
  • Ott, E., 2002 Chaos in Dynamical Systems. Cambridge University Press, second edition, 2 édition (imprimée), version en ligne 2012.
  • Pany, C., 2023 Large amplitude free vibrations analysis of prismatic and non-prismatic different tapered cantilever beams. Pamukkale University Journal of Engineering Sciences 29: 370–376.
  • Pany, C. and G. V. Rao, 2002 Calculation of non-linear fundamental frequency of a cantilever beam using non-linear stiffness. Journal of Sound and Vibration 256: 787–790.
  • Pany, C. and G. V. Rao, 2004 Large amplitude free vibrations of a uniform spring-hinged beam. Journal of Sound and Vibration 271: 1163–1169.
  • Pecora, L. M. and T. L. Carroll, 1990 Synchronization in chaotic systems. Phys. Rev. Lett. 64: 821–824.
  • Sakaguchi, H., 1999 Chaotic dynamics of an unstable burgers equation. Physica D 129: 57–67.
  • Scherer, R., S. L. Kalla, Y. Tang, and J. Huang, 2011 The grünwaldletnikov method for fractional differential equations. Computers and Mathematics with Applications 62: 902–917.
  • Shukla, V. K., 2025 Study of generalized synchronization and inverse generalized synchronization between distributed-order chaotic systems. Journal of Vibration Testing and System Dynamics 9: 281–290.
  • Strogatz, S. H., 2015 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press, second edition.
  • Takhi, H., K. Kemih, L. Moysis, and e. al., 2021 Passivity based sliding mode control and synchronization of a perturbed uncertain unified chaotic system. Mathematics and Computers in Simulation 181: 150–169.
  • Wu, G. C. and D. Baleanu, 2014 Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75: 283–287.
  • Xing, Y., W. Dong, J. Zeng, P. Guo, J. Zhang, et al., 2023 Study of generalized chaotic synchronization method incorporating error-feedback coefficients. Entropy 25.
  • Zouad, F., K. Kemih, and H. Hamiche, 2019 A new secure communication scheme using fractional order delayed chaotic system: design and electronics circuit simulation. Analog Integrated Circuits and Signal Processing 99: 619–632.

New Results on Shape Synchronization in the Drive-Response Scheme of a Class of 2D Fractional-Order Discrete-Time Chaotic Systems

Year 2025, Volume: 7 Issue: 3, 186 - 196
https://doi.org/10.51537/chaos.1650994

Abstract

In this article, we investigate shape synchronization within the drive-response framework for a specific class of 2D discrete-time noninteger-order chaotic dynamics. To achieve synchronization between the driver and response systems, we formulate a novel theorem that establishes a specific control law. This control strategy is meticulously developed to synchronize the chaotic attractors's shapes in the driver-response scheme. A rigorous proof of the theorem is provided, demonstrating its theoretical soundness. The effectiveness of the synchronization technique is validated through extensive numerical simulations. The results show that the synchronization error converges asymptotically to zero, with fast convergence speed, confirming the reliability of the control scheme. Moreover, the response system successfully replicates the geometric structure of the drive system's attractor, demonstrating precise shape synchronization. Using a discrete-time fractional-order chaotic system offers significant advantages, including increased dynamical complexity and a broader key space, which enhance the system's potential for secure communication and encryption applications. Furthermore, shape synchronization allows for the preservation of topological features in chaotic signals, making it particularly useful in applications where structural integrity of the transmitted chaotic signal is essential.

References

  • Abdeljawad, T., 2011 On riemann and caputo fractional differences. Comput. Math. Appl. 62: 1602–1611.
  • Benabdeseelam, A., M. Messadi, K. Kemih, et al., 2025 Chatteringfree terminal sliding mode control based on adaptive exponential reaching barrier function for a chaotic permanent magnet synchronous generator in offshore wind turbine system. Chinese Physics B .
  • Chen, G. and X. Dong, 1998 From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific.
  • Debeljkovic, D. L. and C. M. Aleksendri´c, 2002 Lyapunov and nonlyapunov stability of linear discrete time delay systems. Facta Universitatis, Series: Mechanical Engineering 1: 1147–1160.
  • Debeljkovic, D. L. and S. Stojanovic, 2010 The stability of linear discrete-time delay systems in the sense of lyapunov: an overview. Scientific Technical Review 60: 67–81.
  • Dmitriev, A. S., G. A. Kassian, and A. D. Khilinsky, 2002 Chaotic synchronization of hénon mappings: The information approach. Technical Physics Letters 51.
  • Feki, M., B. Robert, G. Gelle, and M. Colas, 2003 Secure digital communication using discrete-time chaos synchronization. Chaos, Solitons and Fractals 18: 881–890.
  • Fotsa, R. T., P. K. K. Papemsi, G. P. A. Kuete, J. R. M. Pone, S. R. D. Naoussi, et al., 2025 Permanent magnet synchronous motor with load torque: dynamics, circuitry execution and control. Chaos and Fractals 2: 14–19.
  • Guo, F., J. Xie, and Y. Yue, 2014 Chaos control of lozi mapping. Applied Mechanics and Materials 509: 231–235.
  • Hamiche, H., S. Kassim, S. Djennoune, S. Guermah, M. Lahdir, et al., 2015 Secure data transmission scheme based on fractionalorder discrete chaotic system. In International Conference on Control, Engineering and Information Technology (CEIT’2015), Tlemcen, Algeria.
  • Hamiche, H., O. Megherbi, K. Kemih, R. Kara, and A. Ouslimani, 2024 A new synchronization result for fractional-order discretetime chaotic systems via bandlimited channels. Physica Scripta 99.
  • Hamiche, H., H. Takhi, M. Messadi, K. Kemih, O. Megherbi, et al., 2021 New synchronization results for a class of nonlinear discrete-time chaotic systems based on synergetic observer and their implementation. Mathematics and Computers in Simulation 185: 194–217.
  • Hosbas, M. Z., B. Emin, and F. Kaçar, 2025 True random number generator design with a fractional order sprott b chaotic system. ADBA Computer Science 2: 50–55.
  • Huang, Y. Y., H. Huang, Y. Huang, Y.Wang, F. Yu, et al., 2014 Shape synchronization of drive-response for a class of two-dimensional chaotic systems via continuous controllers. Nonlinear Dynamics 78: 2331–2340.
  • Huang, Y. Y., H. Huang, Y. Huang, Y.Wang, F. Yu, et al., 2016 Shape synchronization control for three-dimensional chaotic systems. Chaos Solitons and Fractals 7: 136–145.
  • Huang, Y. Y., H. Huang, Y. Huang, Y. Wang, F. Yu, et al., 2024 Drive-response asymptotic shape synchronization for a class of two dimensional chaotic systems and its application in image encryption. Physica D 463.
  • Jovic, B., 2011 Synchronization techniques for chaotic communication systems. Springer.
  • Kassim, S., O. Megherbi, H. Hamiche, S. Djennoune, and M. Bettayeb, 2019 Speech encryption based on the synchronization of fractional-order chaotic maps. In IEEE 19th International Symposium on Signal Processing and Information Technology (ISSPIT), Sharjah, United Arab Emirates.
  • Kilbas, A. A., H. M. Srivastava, and J. J. Trujillo, 2006 Theory and Application of Fractional Differential Equations. North Holland Mathematics Studies.
  • Kıran, H. E., 2024 A novel chaos-based encryption technique with parallel processing using cuda for mobile powerful gpu control center. Chaos and Fractals 1: 6–18.
  • Liao, X., Z. Gao, and H. Huang, 2013 Synchronization control of fractional-order discrete-time chaotic systems. In European Control Conference (ECC), Zurich, Switzerland.
  • Lissan, D. J., S. Oumarou, B. R. N. Nbendjo, et al., 2025 Suppression of catastrophic motion and horseshoes chaos on a mechanical structure using opto-electromechanicals devices. Chaos Theory and Applications 7: 42–49.
  • Liu, J. M. and L. S. Tsimring, 2006 Digital communications using chaos and nonlinear dynamics. Springer.
  • Liu, Y., 2014 Discrete chaos in fractional hénon maps. International Journal of Nonlinear Science 18: 170–175.
  • Martinez-Guerra, R., C. A. Pérez-Pinacho, and G. C. Gomez-Cortés, 2015 Synchronization of integral and fractional order chaotic systems. Springer.
  • Megherbi, O., S. Kassim, H. Hamiche, M. Bettayeb, and J. P. Barbot, 2017 Robust image transmission scheme based on coupled fractional-order chaotic maps. In SIAM Conference on Control and Its Applications, pp. 54–61, United States of America.
  • Messadi, M., K. Kemih, and H. Hamiche, 2023 A new secure communications scheme based on a synchronisation of hybrid chaotic system. Chaos Theory and Applications 5: 160–166.
  • Messadi, M., A. Mellit, K. Kemih, et al., 2014 Cgpc control of chaos in a permanent magnet synchronous motor using the gradient conjugate and the genetic algorithm. Nonlinear Phenomena in Complex Systems 17: 183–187.
  • Messadi, M., A. Mellit, K. Kemih, et al., 2015 Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system. Chinese Physics B 24: 010502.
  • Mistuwicz, M., 1980 Strange attractor for the lozi-mapping in nonlinear dynamics. Annals of the New York Academy of Sciences 357: 348–358.
  • Monje, C. A., Y. Q. Chen, B. M. Vinagre, D. Xue, and V. Feliu, 2010 Fractional-Order Systems and Control: Fundamentals and Applications. Springer, Berlin.
  • Nijmeijer, H. and I. M. Y. Mareels, 1997 An observer looks at synchronization. IEEE Trans. Circuits Syst: Fundam. Theory Appl. 44: 10.
  • Núñez-López, J. A., D. M. Garcia, O. Sergiyenko, et al., 2025 Modeling and analysis of nonlinear chaotic mechanical dynamics in laser scanning systems. Chaos Theory and Applications 7: 125–137.
  • Ott, E., 2002 Chaos in Dynamical Systems. Cambridge University Press, second edition, 2 édition (imprimée), version en ligne 2012.
  • Pany, C., 2023 Large amplitude free vibrations analysis of prismatic and non-prismatic different tapered cantilever beams. Pamukkale University Journal of Engineering Sciences 29: 370–376.
  • Pany, C. and G. V. Rao, 2002 Calculation of non-linear fundamental frequency of a cantilever beam using non-linear stiffness. Journal of Sound and Vibration 256: 787–790.
  • Pany, C. and G. V. Rao, 2004 Large amplitude free vibrations of a uniform spring-hinged beam. Journal of Sound and Vibration 271: 1163–1169.
  • Pecora, L. M. and T. L. Carroll, 1990 Synchronization in chaotic systems. Phys. Rev. Lett. 64: 821–824.
  • Sakaguchi, H., 1999 Chaotic dynamics of an unstable burgers equation. Physica D 129: 57–67.
  • Scherer, R., S. L. Kalla, Y. Tang, and J. Huang, 2011 The grünwaldletnikov method for fractional differential equations. Computers and Mathematics with Applications 62: 902–917.
  • Shukla, V. K., 2025 Study of generalized synchronization and inverse generalized synchronization between distributed-order chaotic systems. Journal of Vibration Testing and System Dynamics 9: 281–290.
  • Strogatz, S. H., 2015 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press, second edition.
  • Takhi, H., K. Kemih, L. Moysis, and e. al., 2021 Passivity based sliding mode control and synchronization of a perturbed uncertain unified chaotic system. Mathematics and Computers in Simulation 181: 150–169.
  • Wu, G. C. and D. Baleanu, 2014 Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75: 283–287.
  • Xing, Y., W. Dong, J. Zeng, P. Guo, J. Zhang, et al., 2023 Study of generalized chaotic synchronization method incorporating error-feedback coefficients. Entropy 25.
  • Zouad, F., K. Kemih, and H. Hamiche, 2019 A new secure communication scheme using fractional order delayed chaotic system: design and electronics circuit simulation. Analog Integrated Circuits and Signal Processing 99: 619–632.
There are 46 citations in total.

Details

Primary Language English
Subjects Complex Systems in Mathematics, Control Engineering, Mechatronics and Robotics (Other)
Journal Section Research Articles
Authors

Hamid Hamiche 0000-0003-3012-658X

Ouerdia Megherbi 0009-0001-1850-2223

Karim Kemih 0000-0003-0866-5798

Mourad Laghrouche 0000-0002-4515-7488

Publication Date October 29, 2025
Submission Date March 4, 2025
Acceptance Date August 7, 2025
Published in Issue Year 2025 Volume: 7 Issue: 3

Cite

APA Hamiche, H., Megherbi, O., Kemih, K., Laghrouche, M. (n.d.). New Results on Shape Synchronization in the Drive-Response Scheme of a Class of 2D Fractional-Order Discrete-Time Chaotic Systems. Chaos Theory and Applications, 7(3), 186-196. https://doi.org/10.51537/chaos.1650994

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg