Research Article
BibTex RIS Cite

CAN ARTIFICIAL INTELLIGENCE BE USED FOR DIVERSITY MANAGEMENT IN PUBLIC ADMINISTRATION? APPLICATIONS AND CONSIDERATIONS

Year 2025, Volume: 6 Issue: 10, 76 - 93, 30.06.2025
https://doi.org/10.62356/cihansumul.1707340

Abstract

Artificial intelligence (AI) presents a promising solution to the longstanding issues of bias and injustice in public administration, particularly in areas such as recruitment, resource allocation, and policy implementation. Traditional processes rely on subjective human judgments that may consciously or unconsciously favor certain groups. Still, AI-driven assessments reduce bias and promote fairer outcomes by focusing on objective, job-related data. This can help public institutions create more diverse workforces that better represent their communities. Additionally, AI’s ability to analyze complex data can reveal inequalities in access to basic services such as healthcare and education, enabling more targeted and equitable policy interventions. However, to fully realize these benefits, AI systems must be carefully designed to avoid reinforcing existing biases. It is essential to implement robust ethical guidelines and governance frameworks to ensure that AI promotes fairness and inclusivity. The article examines the issue in detail through 13 application examples in this context. In this respect, descriptive analysis and observational methods were preferred from qualitative research techniques.

References

  • Ahmad, K., Iqbal, W., El-Hassan, A., Qadir, J., Benhaddou, D., Ayyash, M., & Al-Fuqaha, A. (2023). Data-driven artificial intelligence in education: A comprehensive review. IEEE Transactions on Learning Technologies, 17, 12-31.
  • Albassam, W. A. (2023). The power of artificial intelligence in recruitment: An analytical review of current AI-based recruitment strategies. International Journal of Professional Business Review: Int. J. Prof. Bus. Rev., 8(6), 4.
  • Alexiadou, A. S. (2024). Artificial intelligence in public sector services: ethical issues. In Handbook of Services and Artificial Intelligence (pp. 266-282). Edward Elgar Publishing.
  • Alsbou, M. K. K., & Alsaraireh, R. E. A. I. (2024). Data-driven decision-making in education: Leveraging AI for school improvement. In 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS) (Vol. 1, pp. 1-6). IEEE.
  • Amicone, A., Marangoni, L., Marceddu, A., & Miccoli, M. (2023). AI-based Public Policy Making: a new holistic, integrated and “AI by design” approach. In 2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT) (pp. 525-532). IEEE.
  • Bakare, F. A., Ikumapayi, (2025). Securing Government Revenue: A Cloud-Based AI Model for Predictive Detection of Tax-Related Financial Crimes. International Journal of Computer Applications Technology and Research Volume 14–Issue 05, 71 – 86, DOI:10.7753/IJCATR1405.1007
  • Boyd, M., & Wilson, N. (2017). Rapid developments in artificial intelligence: how might the New Zealand government respond?. Policy Quarterly, 13(4).
  • Brown, J., Burke, J., & Sauciuc, A. (2024). Using Artificial Intelligence to Evaluate Employees: The Effects on Recruitment, Effort, and Retention. Kelley School of Business Research Paper, (2021-25).
  • Cachat-Rosset, G., & Klarsfeld, A. (2023). Diversity, equity, and inclusion in artificial intelligence: an evaluation of guidelines. Applied Artificial Intelligence, 37(1), 2176618.
  • Cantens, T. (2025). How will the state think with ChatGPT? The challenges of generative artificial intelligence for public administrations. AI & SOCIETY, 40(1), 133-144.
  • Capraro, V., Lentsch, A., Acemoglu, D., Akgun, S., Akhmedova, A., Bilancini, E., ... & Viale, R. (2024). The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS nexus, 3(6), pgae191.
  • Charles, V., Rana, N. P., & Carter, L. (2022). Artificial Intelligence for data-driven decision-making and governance in public affairs. Government Information Quarterly, 39(4), 101742.
  • Chiariello, A. M., & Frondizi, R. (2024). Advancing Social Equity In Public Services. Diversity as Strategic Opportunity: Exploring New Paths to Good Administration, 79.
  • Chilunjika, A., Intauno, K., & Chilunjika, S. R. (2022). Artificial intelligence and public sector human resource management in South Africa: Opportunities, challenges and prospects. SA Journal of Human Resource Management, 20, 1972.
  • Choi, K., & Jailani, H. (2020, March). Singapore's moments of life: A metadata application. In Proceedings of the International Conference on Dublin Core and Metadata Applications. Dublin Core Metadata Initiative.
  • Cingolani, L., & Salazar-Morales, D. (2024). The role of public workforce diversity and the administrative ecosystem in advancing digital public service innovation. Public Management Review, 26(10), 2966-2991.
  • Correia, P. M. A. R., Pedro, R. L. D., Mendes, I. D. O., & Serra, A. D. (2024). The challenges of artificial intelligence in public administration in the framework of smart cities: reflections and legal issues. Social sciences, 13(2), 75.
  • Corvalán, J. G. (2018). Digital and intelligent public administration: Transformations in the era of artificial intelligence. A&C-Revista de Direito Administrativo & Constitucional, 18(71), 55-87.
  • Criado, J. I., & Gil-Garcia, J. R. (2019). Creating public value through smart technologies and strategies: From digital services to artificial intelligence and beyond. International Journal of Public Sector Management, 32(5), 438-450.
  • Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard business review, 96(1), 108-116.
  • Dreyling, R., Tammet, T., Pappel, I., & McBride, K. (2024). Navigating the AI Maze: Lessons from Estonia's Bürokratt on Public Sector AI Digital Transformation. Available at SSRN 4850696.
  • Engstrom, D. F., Ho, D. E., Sharkey, C. M., & Cuéllar, M. F. (2020). Government by algorithm: Artificial intelligence in federal administrative agencies. NYU School of Law, Public Law Research Paper, (20-54).
  • Fosch-Villaronga, E., & Poulsen, A. (2022). Diversity and inclusion in artificial intelligence. Law and artificial intelligence: Regulating AI and applying AI in legal practice, 109-134.
  • Fouskas, T. (2025). International Migration Management, Employment and Health Integration of Migrants and Refugees in the Artificial Intelligence Era. In AI and Diversity in a Datafied World of Work: Will the Future of Work be Inclusive? (pp. 161-181). Emerald Publishing Limited.
  • Gavighan, C., Knott, A., Maclaurin, J., Zerilli, J., & Liddicoat, J. (2019). Government use of artificial intelligence in New Zealand.
  • Gerontas, A., Zeginis, D., Promikyridis, R., Androš, M., Tambouris, E., Cipan, V., & Tarabanis, K. (2022). Enhancing core public service vocabulary to enable public service personalization. Information, 13(5), 225.
  • Ghedabna, L., Ghedabna, R., Imtiaz, Q., Faheem, M. A., Alkhayyat, A., & Hosen, M. S. (2024). Artificial Intelligence in Human Resource Management: Revolutionizing Recruitment, Performance, and Employee Development. Nanotechnology Perceptions, 52-68.
  • Ghezelbash, D. (2025). AI-Powered Platforms for Access to Justice: The Case of Hear Me Out. UNSW Law Research, (25-13).
  • Hager, G. D., Drobnis, A., Fang, F., Ghani, R., Greenwald, A., Lyons, T., ... & Tambe, M. (2019). Artificial intelligence for social good. arXiv preprint arXiv:1901.05406.
  • Henman, P. (2020). Improving public services using artificial intelligence: possibilities, pitfalls, governance. Asia Pacific Journal of Public Administration, 42(4), 209-221.
  • Hossin, M. A., Du, J., Mu, L., & Asante, I. O. (2023). Big data-driven public policy decisions: Transformation toward smart governance. Sage Open, 13(4), 21582440231215123.
  • Kaun, A., Männiste, M., & Liminga, A. (2023). Mapping the automated decision-making landscape in Swedish and Estonian welfarestate.
  • Kim, S. W. (2016). A Conceptual Framework for the personalization of public administration services. Journal of Digital Convergence, 14(8), 57-67.
  • Kopponen, A., Hahto, A., Villman, T., Kettunen, P., Mikkonen, T., & Rossi, M. (2024). Personalised public services powered by AI: The citizen digital twin approach. In Research Handbook on Public Management and Artificial Intelligence (pp. 170-186). Edward Elgar Publishing.
  • Kuziemski, M., & Misuraca, G. (2020). AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings. Telecommunications policy, 44(6), 101976.
  • Ladislas, E. S. (2023). Personalizing Government Services through Artificial Intelligence: Opportunities and Challenges. Indian Journal of Artificial Intelligence and Neural Networking (IJAINN), 3(5), 13-18.
  • Lee, D., & Kwon, H. (2024). Meta-analysis on effects of artificial intelligence education in K-12 South Korean classrooms. Education and Information Technologies, 1-36.
  • Lee, J., & Jeong, H. (2023). Keyword analysis of artificial intelligence education policy in South Korea. IEEE Access, 11, 102408-102417.
  • Loi, M., & Spielkamp, M. (2021). Towards accountability in the use of artificial intelligence for public administrations. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (pp. 757-766).
  • Loukis, E. N., Maragoudakis, M., & Kyriakou, N. (2020). Artificial intelligence-based public sector data analytics for economic crisis policymaking. Transforming Government: People, Process and Policy, 14(4), 639-662.
  • Mahor, V., Rawat, R., Kumar, A., Garg, B., & Pachlasiya, K. (2023). IoT and artificial intelligence techniques for public safety and security. In Smart urban computing applications (pp. 111-126). River Publishers.
  • Makore, S. T. (2024). Regulating Artificial Intelligence to Advance Financial Inclusion in South Africa. Potchefstroom Electronic Law Journal (PELJ), 27(1), 1-35.
  • Marmolejo-Ramos, F., Workman, T., Walker, C., Lenihan, D., Moulds, S., Correa, J. C., ... & Sonna, B. (2022). AI-powered narrative building for facilitating public participation and engagement. Discover Artificial Intelligence, 2(1), 7.
  • McCandless, S., Bishu, S. G., Gomez Hernandez, M., Paredes Eraso, E., Sabharwal, M., Santis, E. L., & Yates, S. (2022). A long road: Patterns and prospects for social equity, diversity, and inclusion in public administration. Public Administration, 100(1), 129-148.
  • Menke, W., Gomes, R., & Xavier, F. (2024). Impacts of AI-based anti-corruption audits on risk aversion in decision-making: a case study of the Brazilian ALICE tool. Global Public Policy and Governance, 4(3), 273-286.
  • Mikhaylov, S. J., Esteve, M., & Campion, A. (2018). Artificial intelligence for the public sector: opportunities and challenges of cross-sector collaboration. Philosophical transactions of the royal society a: mathematical, physical and engineering sciences, 376(2128), 20170357.
  • Mirza, A., & Sharma, S. K. (2024). Personalization and Customization of Governance Products and Services for Citizens Using Big Data Analytics and Artificial Intelligence. In Augmenting Customer Retention Through Big Data Analytics (pp. 277-289). Apple Academic Press.
  • Nolan-Flecha, N. (2019). Next generation diversity and inclusion policies in the public service: Ensuring public services reflect the societies they serve.
  • Odilla, F. (2023). Bots against corruption: Exploring the benefits and limitations of AI-based anti-corruption technology. Crime, Law and Social Change, 80(4), 353-396.
  • Panda, M., Hossain, M. M., Puri, R., & Ahmad, A. (2025). Artificial intelligence in action: shaping the future of public sector. Digital Policy, Regulation and Governance.
  • Papadakis, T., Christou, I. T., Ipektsidis, C., Soldatos, J., & Amicone, A. (2024). Explainable and transparent artificial intelligence for public policymaking. Data & Policy, 6, e10.
  • Persson, M., & Wallo, A. (2024). Digital automation and working life of HR practitioners: a gender analysis of the implications for workforce and work practices. Gender, Technology and Development, 28(3), 408-427.
  • Rehm, G., Marheinecke, K., Hegele, S., Piperidis, S., Bontcheva, K., Hajič, J., ... & Yvon, F. (2020). The European language technology landscape in 2020: Language-centric and human-centric AI for cross-cultural communication in multilingual Europe. arXiv preprint arXiv:2003.13833.
  • Roche, C., Wall, P. J., & Lewis, D. (2023). Ethics and diversity in artificial intelligence policies, strategies and initiatives. AI and Ethics, 3(4), 1095-1115.
  • Rönnblom, M., Carlsson, V., & Öjehag‐Pettersson, A. (2023). Gender equality in Swedish AI policies. What's the problem represented to be?. Review of Policy Research, 40(5), 688-704.
  • Safitri, I., Widodo, H., & Muafi, M. (2024). Application of High-Performance Work System with AI in Employee Recruitment and Performance Evaluation. In Technology-Driven Business Innovation: Unleashing the Digital Advantage, Volume 1 (pp. 465-473). Cham: Springer Nature Switzerland.
  • Shafik, W. (2024). Community and Artificial Intelligence-Enabled Disaster Management and Preparedness. In Navigating Natural Hazards in Mountainous Topographies: Exploring the Challenges and Opportunities of Living (pp. 243-266). Cham: Springer Nature Switzerland.
  • Sharmin, S. (2025). Refugee Resettlement & AI-Powered Resource Allocation Optimizing social services for displaced populations. Journal of Public Administration Research, 2(1), 13-36.
  • Sipahi, E. B., & Saayi, Z. (2024). The world’s first “Smart Nation” vision: the case of Singapore. Smart Cities and Regional Development (SCRD) Journal, 8(1), 41-58.
  • Tangi, L., Combetto, M., Martin, B. J., Rodrıguez, M. P. (2023). Artificial Intelligence for interoperability in the European public sector. European Commission.
  • Telsaç, C. (2024). Is a Competitive Public Administration Possible?: Entrepreneurship in the Public Sector. In New Strategy Models in Digital Entrepreneurship (pp. 186-200). IGI Global.
  • Telsaç, C. (2025). Digitalization and Transparency in Public Administration, In: Digital Transformation in Public Administration: Issues and Perspectives Editors: Doğan Nadi Leblebici, Hikmet Kavruk and Hasan Tutar (pp. 111-124). Nova Science Publishers.
  • Valle-Cruz, D., Alejandro Ruvalcaba-Gomez, E., Sandoval-Almazan, R., & Ignacio Criado, J. (2019, June). A review of artificial intelligence in government and its potential from a public policy perspective. In Proceedings of the 20th annual international conference on digital government research (pp. 91-99).
  • Veale, M., & Brass, I. (2019). Administration by algorithm? Public management meets public sector machine learning. Oxford University Press.
  • Villegas-Ch, W., García-Ortiz, J., & Sánchez-Viteri, S. (2024). Towards intelligent monitoring in iot: Ai applications for real-time analysis and prediction. IEEE Access.
  • Vyas, R., Agrawal, V., Verma, D. R., & Patel, P. (2025). AI to the Rescue: Revolutionizing Post-Disaster Recovery Systems. In Proceedings of International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICSHIT 2024) (Vol. 190, p. 235). Springer Nature.
  • Wang, Q., & Abdelrahman, W. (2023). High-Precision AI-enabled flood prediction integrating local sensor data and 3rd party weather forecast. Sensors, 23(6), 3065.
  • Willems, J., Schmid, M. J., Vanderelst, D., Vogel, D., & Ebinger, F. (2023). AI-driven public services and the privacy paradox: do citizens really care about their privacy?. Public Management Review, 25(11), 2116-2134.
  • Wirtz, B. W., Weyerer, J. C., & Geyer, C. (2019). Artificial intelligence and the public sector applications and challenges. International Journal of Public Administration, 42(7), 596-615.
  • Wirtz, B. W., Weyerer, J. C., & Sturm, B. J. (2020). The dark sides of artificial intelligence: An integrated AI governance framework for public administration. International Journal of Public Administration, 43(9), 818-829.
  • Yasir, A., Ahmad, A., Abbas, S., Inairat, M., Al-Kassem, A. H., & Rasool, A. (2022, February). How artificial intelligence is promoting financial inclusion? A study on barriers of financial inclusion. In 2022 International Conference on Business Analytics for Technology and Security (ICBATS) (pp. 1-6). IEEE.
  • Yılmaz V., Telsaç, C. (2021). Akıllı Kent ve Dijitalleşme, In: Akıllı Kentler (Uygulamalar, Sorunlar ve Çözümler) Ed. (Yakup Bulut, M. Miraç Aslan) Chapter: 7 (pp. 139-166). Ekin Yayınevi

YAPAY ZEKÂ KAMU YÖNETİMİNDE ÇEŞİTLİLİK YÖNETİMİ İÇİN KULLANILABİLİR Mİ? UYGULAMALAR VE DÜŞÜNCELER

Year 2025, Volume: 6 Issue: 10, 76 - 93, 30.06.2025
https://doi.org/10.62356/cihansumul.1707340

Abstract

Yapay zekâ (AI), özellikle işe alım, kaynak tahsisi ve politika uygulama gibi alanlarda kamu yönetiminde uzun süredir devam eden önyargı ve adaletsizlik sorunlarına umut verici bir çözüm sunmaktadır. Geleneksel süreçler bilinçli veya bilinçsiz belirli grupları kayırabilen öznel insan yargılarına dayanır, ancak AI odaklı değerlendirmeler nesnel, işle ilgili verilere odaklanarak önyargıyı azaltır ve daha adil sonuçları teşvik eder. Bu, kamu kurumlarının topluluklarını daha iyi temsil eden daha çeşitli iş gücü oluşturmasına yardımcı olabilir. Ek olarak, AI'nın karmaşık verileri analiz etme yeteneği, sağlık hizmeti ve eğitim gibi temel hizmetlere erişimdeki eşitsizlikleri ortaya çıkararak daha hedefli ve adil politika müdahalelerine olanak tanır. Ancak, bu faydaları tam olarak gerçekleştirmek için, AI sistemleri mevcut önyargıları güçlendirmekten kaçınmak için dikkatlice tasarlanmalıdır. AI'nın adaleti ve kapsayıcılığı desteklemesini sağlamak için sağlam etik yönergeleri ve yönetişim çerçevelerini uygulamak esastır. Makale bu bağlamda 13 uygulama örneği üzerinden konuyu detaylı bir şekilde ele almaktadır. Bu açıdan nitel araştırma tekniklerinden betimsel analiz ve gözlem yöntemleri tercih edilmiştir.

References

  • Ahmad, K., Iqbal, W., El-Hassan, A., Qadir, J., Benhaddou, D., Ayyash, M., & Al-Fuqaha, A. (2023). Data-driven artificial intelligence in education: A comprehensive review. IEEE Transactions on Learning Technologies, 17, 12-31.
  • Albassam, W. A. (2023). The power of artificial intelligence in recruitment: An analytical review of current AI-based recruitment strategies. International Journal of Professional Business Review: Int. J. Prof. Bus. Rev., 8(6), 4.
  • Alexiadou, A. S. (2024). Artificial intelligence in public sector services: ethical issues. In Handbook of Services and Artificial Intelligence (pp. 266-282). Edward Elgar Publishing.
  • Alsbou, M. K. K., & Alsaraireh, R. E. A. I. (2024). Data-driven decision-making in education: Leveraging AI for school improvement. In 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS) (Vol. 1, pp. 1-6). IEEE.
  • Amicone, A., Marangoni, L., Marceddu, A., & Miccoli, M. (2023). AI-based Public Policy Making: a new holistic, integrated and “AI by design” approach. In 2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT) (pp. 525-532). IEEE.
  • Bakare, F. A., Ikumapayi, (2025). Securing Government Revenue: A Cloud-Based AI Model for Predictive Detection of Tax-Related Financial Crimes. International Journal of Computer Applications Technology and Research Volume 14–Issue 05, 71 – 86, DOI:10.7753/IJCATR1405.1007
  • Boyd, M., & Wilson, N. (2017). Rapid developments in artificial intelligence: how might the New Zealand government respond?. Policy Quarterly, 13(4).
  • Brown, J., Burke, J., & Sauciuc, A. (2024). Using Artificial Intelligence to Evaluate Employees: The Effects on Recruitment, Effort, and Retention. Kelley School of Business Research Paper, (2021-25).
  • Cachat-Rosset, G., & Klarsfeld, A. (2023). Diversity, equity, and inclusion in artificial intelligence: an evaluation of guidelines. Applied Artificial Intelligence, 37(1), 2176618.
  • Cantens, T. (2025). How will the state think with ChatGPT? The challenges of generative artificial intelligence for public administrations. AI & SOCIETY, 40(1), 133-144.
  • Capraro, V., Lentsch, A., Acemoglu, D., Akgun, S., Akhmedova, A., Bilancini, E., ... & Viale, R. (2024). The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS nexus, 3(6), pgae191.
  • Charles, V., Rana, N. P., & Carter, L. (2022). Artificial Intelligence for data-driven decision-making and governance in public affairs. Government Information Quarterly, 39(4), 101742.
  • Chiariello, A. M., & Frondizi, R. (2024). Advancing Social Equity In Public Services. Diversity as Strategic Opportunity: Exploring New Paths to Good Administration, 79.
  • Chilunjika, A., Intauno, K., & Chilunjika, S. R. (2022). Artificial intelligence and public sector human resource management in South Africa: Opportunities, challenges and prospects. SA Journal of Human Resource Management, 20, 1972.
  • Choi, K., & Jailani, H. (2020, March). Singapore's moments of life: A metadata application. In Proceedings of the International Conference on Dublin Core and Metadata Applications. Dublin Core Metadata Initiative.
  • Cingolani, L., & Salazar-Morales, D. (2024). The role of public workforce diversity and the administrative ecosystem in advancing digital public service innovation. Public Management Review, 26(10), 2966-2991.
  • Correia, P. M. A. R., Pedro, R. L. D., Mendes, I. D. O., & Serra, A. D. (2024). The challenges of artificial intelligence in public administration in the framework of smart cities: reflections and legal issues. Social sciences, 13(2), 75.
  • Corvalán, J. G. (2018). Digital and intelligent public administration: Transformations in the era of artificial intelligence. A&C-Revista de Direito Administrativo & Constitucional, 18(71), 55-87.
  • Criado, J. I., & Gil-Garcia, J. R. (2019). Creating public value through smart technologies and strategies: From digital services to artificial intelligence and beyond. International Journal of Public Sector Management, 32(5), 438-450.
  • Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard business review, 96(1), 108-116.
  • Dreyling, R., Tammet, T., Pappel, I., & McBride, K. (2024). Navigating the AI Maze: Lessons from Estonia's Bürokratt on Public Sector AI Digital Transformation. Available at SSRN 4850696.
  • Engstrom, D. F., Ho, D. E., Sharkey, C. M., & Cuéllar, M. F. (2020). Government by algorithm: Artificial intelligence in federal administrative agencies. NYU School of Law, Public Law Research Paper, (20-54).
  • Fosch-Villaronga, E., & Poulsen, A. (2022). Diversity and inclusion in artificial intelligence. Law and artificial intelligence: Regulating AI and applying AI in legal practice, 109-134.
  • Fouskas, T. (2025). International Migration Management, Employment and Health Integration of Migrants and Refugees in the Artificial Intelligence Era. In AI and Diversity in a Datafied World of Work: Will the Future of Work be Inclusive? (pp. 161-181). Emerald Publishing Limited.
  • Gavighan, C., Knott, A., Maclaurin, J., Zerilli, J., & Liddicoat, J. (2019). Government use of artificial intelligence in New Zealand.
  • Gerontas, A., Zeginis, D., Promikyridis, R., Androš, M., Tambouris, E., Cipan, V., & Tarabanis, K. (2022). Enhancing core public service vocabulary to enable public service personalization. Information, 13(5), 225.
  • Ghedabna, L., Ghedabna, R., Imtiaz, Q., Faheem, M. A., Alkhayyat, A., & Hosen, M. S. (2024). Artificial Intelligence in Human Resource Management: Revolutionizing Recruitment, Performance, and Employee Development. Nanotechnology Perceptions, 52-68.
  • Ghezelbash, D. (2025). AI-Powered Platforms for Access to Justice: The Case of Hear Me Out. UNSW Law Research, (25-13).
  • Hager, G. D., Drobnis, A., Fang, F., Ghani, R., Greenwald, A., Lyons, T., ... & Tambe, M. (2019). Artificial intelligence for social good. arXiv preprint arXiv:1901.05406.
  • Henman, P. (2020). Improving public services using artificial intelligence: possibilities, pitfalls, governance. Asia Pacific Journal of Public Administration, 42(4), 209-221.
  • Hossin, M. A., Du, J., Mu, L., & Asante, I. O. (2023). Big data-driven public policy decisions: Transformation toward smart governance. Sage Open, 13(4), 21582440231215123.
  • Kaun, A., Männiste, M., & Liminga, A. (2023). Mapping the automated decision-making landscape in Swedish and Estonian welfarestate.
  • Kim, S. W. (2016). A Conceptual Framework for the personalization of public administration services. Journal of Digital Convergence, 14(8), 57-67.
  • Kopponen, A., Hahto, A., Villman, T., Kettunen, P., Mikkonen, T., & Rossi, M. (2024). Personalised public services powered by AI: The citizen digital twin approach. In Research Handbook on Public Management and Artificial Intelligence (pp. 170-186). Edward Elgar Publishing.
  • Kuziemski, M., & Misuraca, G. (2020). AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings. Telecommunications policy, 44(6), 101976.
  • Ladislas, E. S. (2023). Personalizing Government Services through Artificial Intelligence: Opportunities and Challenges. Indian Journal of Artificial Intelligence and Neural Networking (IJAINN), 3(5), 13-18.
  • Lee, D., & Kwon, H. (2024). Meta-analysis on effects of artificial intelligence education in K-12 South Korean classrooms. Education and Information Technologies, 1-36.
  • Lee, J., & Jeong, H. (2023). Keyword analysis of artificial intelligence education policy in South Korea. IEEE Access, 11, 102408-102417.
  • Loi, M., & Spielkamp, M. (2021). Towards accountability in the use of artificial intelligence for public administrations. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (pp. 757-766).
  • Loukis, E. N., Maragoudakis, M., & Kyriakou, N. (2020). Artificial intelligence-based public sector data analytics for economic crisis policymaking. Transforming Government: People, Process and Policy, 14(4), 639-662.
  • Mahor, V., Rawat, R., Kumar, A., Garg, B., & Pachlasiya, K. (2023). IoT and artificial intelligence techniques for public safety and security. In Smart urban computing applications (pp. 111-126). River Publishers.
  • Makore, S. T. (2024). Regulating Artificial Intelligence to Advance Financial Inclusion in South Africa. Potchefstroom Electronic Law Journal (PELJ), 27(1), 1-35.
  • Marmolejo-Ramos, F., Workman, T., Walker, C., Lenihan, D., Moulds, S., Correa, J. C., ... & Sonna, B. (2022). AI-powered narrative building for facilitating public participation and engagement. Discover Artificial Intelligence, 2(1), 7.
  • McCandless, S., Bishu, S. G., Gomez Hernandez, M., Paredes Eraso, E., Sabharwal, M., Santis, E. L., & Yates, S. (2022). A long road: Patterns and prospects for social equity, diversity, and inclusion in public administration. Public Administration, 100(1), 129-148.
  • Menke, W., Gomes, R., & Xavier, F. (2024). Impacts of AI-based anti-corruption audits on risk aversion in decision-making: a case study of the Brazilian ALICE tool. Global Public Policy and Governance, 4(3), 273-286.
  • Mikhaylov, S. J., Esteve, M., & Campion, A. (2018). Artificial intelligence for the public sector: opportunities and challenges of cross-sector collaboration. Philosophical transactions of the royal society a: mathematical, physical and engineering sciences, 376(2128), 20170357.
  • Mirza, A., & Sharma, S. K. (2024). Personalization and Customization of Governance Products and Services for Citizens Using Big Data Analytics and Artificial Intelligence. In Augmenting Customer Retention Through Big Data Analytics (pp. 277-289). Apple Academic Press.
  • Nolan-Flecha, N. (2019). Next generation diversity and inclusion policies in the public service: Ensuring public services reflect the societies they serve.
  • Odilla, F. (2023). Bots against corruption: Exploring the benefits and limitations of AI-based anti-corruption technology. Crime, Law and Social Change, 80(4), 353-396.
  • Panda, M., Hossain, M. M., Puri, R., & Ahmad, A. (2025). Artificial intelligence in action: shaping the future of public sector. Digital Policy, Regulation and Governance.
  • Papadakis, T., Christou, I. T., Ipektsidis, C., Soldatos, J., & Amicone, A. (2024). Explainable and transparent artificial intelligence for public policymaking. Data & Policy, 6, e10.
  • Persson, M., & Wallo, A. (2024). Digital automation and working life of HR practitioners: a gender analysis of the implications for workforce and work practices. Gender, Technology and Development, 28(3), 408-427.
  • Rehm, G., Marheinecke, K., Hegele, S., Piperidis, S., Bontcheva, K., Hajič, J., ... & Yvon, F. (2020). The European language technology landscape in 2020: Language-centric and human-centric AI for cross-cultural communication in multilingual Europe. arXiv preprint arXiv:2003.13833.
  • Roche, C., Wall, P. J., & Lewis, D. (2023). Ethics and diversity in artificial intelligence policies, strategies and initiatives. AI and Ethics, 3(4), 1095-1115.
  • Rönnblom, M., Carlsson, V., & Öjehag‐Pettersson, A. (2023). Gender equality in Swedish AI policies. What's the problem represented to be?. Review of Policy Research, 40(5), 688-704.
  • Safitri, I., Widodo, H., & Muafi, M. (2024). Application of High-Performance Work System with AI in Employee Recruitment and Performance Evaluation. In Technology-Driven Business Innovation: Unleashing the Digital Advantage, Volume 1 (pp. 465-473). Cham: Springer Nature Switzerland.
  • Shafik, W. (2024). Community and Artificial Intelligence-Enabled Disaster Management and Preparedness. In Navigating Natural Hazards in Mountainous Topographies: Exploring the Challenges and Opportunities of Living (pp. 243-266). Cham: Springer Nature Switzerland.
  • Sharmin, S. (2025). Refugee Resettlement & AI-Powered Resource Allocation Optimizing social services for displaced populations. Journal of Public Administration Research, 2(1), 13-36.
  • Sipahi, E. B., & Saayi, Z. (2024). The world’s first “Smart Nation” vision: the case of Singapore. Smart Cities and Regional Development (SCRD) Journal, 8(1), 41-58.
  • Tangi, L., Combetto, M., Martin, B. J., Rodrıguez, M. P. (2023). Artificial Intelligence for interoperability in the European public sector. European Commission.
  • Telsaç, C. (2024). Is a Competitive Public Administration Possible?: Entrepreneurship in the Public Sector. In New Strategy Models in Digital Entrepreneurship (pp. 186-200). IGI Global.
  • Telsaç, C. (2025). Digitalization and Transparency in Public Administration, In: Digital Transformation in Public Administration: Issues and Perspectives Editors: Doğan Nadi Leblebici, Hikmet Kavruk and Hasan Tutar (pp. 111-124). Nova Science Publishers.
  • Valle-Cruz, D., Alejandro Ruvalcaba-Gomez, E., Sandoval-Almazan, R., & Ignacio Criado, J. (2019, June). A review of artificial intelligence in government and its potential from a public policy perspective. In Proceedings of the 20th annual international conference on digital government research (pp. 91-99).
  • Veale, M., & Brass, I. (2019). Administration by algorithm? Public management meets public sector machine learning. Oxford University Press.
  • Villegas-Ch, W., García-Ortiz, J., & Sánchez-Viteri, S. (2024). Towards intelligent monitoring in iot: Ai applications for real-time analysis and prediction. IEEE Access.
  • Vyas, R., Agrawal, V., Verma, D. R., & Patel, P. (2025). AI to the Rescue: Revolutionizing Post-Disaster Recovery Systems. In Proceedings of International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICSHIT 2024) (Vol. 190, p. 235). Springer Nature.
  • Wang, Q., & Abdelrahman, W. (2023). High-Precision AI-enabled flood prediction integrating local sensor data and 3rd party weather forecast. Sensors, 23(6), 3065.
  • Willems, J., Schmid, M. J., Vanderelst, D., Vogel, D., & Ebinger, F. (2023). AI-driven public services and the privacy paradox: do citizens really care about their privacy?. Public Management Review, 25(11), 2116-2134.
  • Wirtz, B. W., Weyerer, J. C., & Geyer, C. (2019). Artificial intelligence and the public sector applications and challenges. International Journal of Public Administration, 42(7), 596-615.
  • Wirtz, B. W., Weyerer, J. C., & Sturm, B. J. (2020). The dark sides of artificial intelligence: An integrated AI governance framework for public administration. International Journal of Public Administration, 43(9), 818-829.
  • Yasir, A., Ahmad, A., Abbas, S., Inairat, M., Al-Kassem, A. H., & Rasool, A. (2022, February). How artificial intelligence is promoting financial inclusion? A study on barriers of financial inclusion. In 2022 International Conference on Business Analytics for Technology and Security (ICBATS) (pp. 1-6). IEEE.
  • Yılmaz V., Telsaç, C. (2021). Akıllı Kent ve Dijitalleşme, In: Akıllı Kentler (Uygulamalar, Sorunlar ve Çözümler) Ed. (Yakup Bulut, M. Miraç Aslan) Chapter: 7 (pp. 139-166). Ekin Yayınevi
There are 72 citations in total.

Details

Primary Language English
Subjects Public Administration
Journal Section Articles
Authors

Cüneyt Telsaç 0000-0002-4133-4846

Ferhat Arı 0000-0001-6397-1398

Early Pub Date June 27, 2025
Publication Date June 30, 2025
Submission Date May 27, 2025
Acceptance Date June 27, 2025
Published in Issue Year 2025 Volume: 6 Issue: 10

Cite

APA Telsaç, C., & Arı, F. (2025). CAN ARTIFICIAL INTELLIGENCE BE USED FOR DIVERSITY MANAGEMENT IN PUBLIC ADMINISTRATION? APPLICATIONS AND CONSIDERATIONS. Cihanşümul Akademi Sosyal Bilimler Dergisi, 6(10), 76-93. https://doi.org/10.62356/cihansumul.1707340

Cihansumul Academy Journal of Social Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).