Research Article
BibTex RIS Cite
Year 2014, Volume: 1 Issue: 1, 73 - 80, 31.12.2014

Abstract

References

  • 1. Vorontsov M. A. and Shmalgauzen V. I., The Principles of Adaptive Optics, Izdatel’stvo Nauka, Moscow, 1985 (in Russian).
  • 2. Yagubov G.Y., Ibrahimov N.S. The optimal control problem for a time-dependent equation of quasi-optics I, Sat: "Problems of Math. and wholesale. Management ", Baku, 2001, pp. 49-57
  • 3. Ibrahimov N.S., On the existence of solutions for the identification problem for the unsteady boundary observation equation quasioptics, Bulletin of the Lankaran State. Univ. Ser. Science, 2010, Lankaran, p. 27-44.
  • 4. Ibrahimov N.S., The task of identifying non-stationary equation for the quasi-optics, Tauride Journal of Computer Science and Mathematics, 2010, № 2, p. 45-55.
  • 5. Ibrahimov N.S., On a problem of identification on the final observation for linear time-dependent equation quasioptics, Journal of Computational and Applied Mathematics, Kiev. Zap them. Shevchenko, 2010, № 4, p. 26-37. 6. Lions J.-L., Optimal control of systems governed by partial differential equations, Springer-Verlag, 1972. p 416 .
  • 7. Iskenderov A.D., Matematiksel fiziğin çok boyutlu denklemleri için ters problemlerin varyasyonel formülasyonu, Dokl. АN SSSR, 1984, c. 274, № 3, s.531-533.
  • 8. Iskenderov A.D . Mahmudov N.M., Kuantum Mekanik sistemlerin Lions fonksiyoneli kriterli optimal kontrolü, - Izv.AN. Azerb. SSR, Serie fiz. tekn. mat. Bilimleri, 1995,c. XVI, №5-6, s. 30-35.
  • 9. Mahmudov N.M., Reel katsayılı Schrödinger denklemi için bir optimal kontrol problemi, Izv. Vuzov., 2010, № 11, s. 31-40.
  • 10. Ladyzhenskaya O.A. “ The Boundary value problems of mathematical physics” Springer Verlag, (1985).
  • 11. Iskenderov A.D., Ibrahimov N.S., The initial-boundary value problems for the unsteady equation quasioptics, Bulletin of the Lankaran State. Univ. Ser. Science, 2009, Lankaran, p. 47-66
  • 12. Yoshida K., Functional analysis, Springer-Verlag, 1967.
  • 13. Goebel M., On existence of optimal control, Math. Nachr.,1979, vol.93(1), pp. 67-73.
  • 14.Vasilyev F.P., Methods of solving for extremal problems, Nauka, Moscow, 1981, p. 400.

KUAZİ OPTİĞİN DURGUN OLMAYAN DENKLEMİ İÇİN BİR OPTİMAL KONTROL PROBLEMİ

Year 2014, Volume: 1 Issue: 1, 73 - 80, 31.12.2014

Abstract

In this paper, an optimal control problem for
nonstationary quasi-optics equation that show the scattering of the light beam
inhomogeneous mediums is considered. In this problem, controls are a refraction
and absortion indicators of the scattered medium of the light beam. As a cost
fuctional is used the Lions functional that is based on Dirichlet- Neumann
operator. For the considered optimal control problem, the existence and
uniqueness theorems are obtained. Frechet-differentiability of the cost
functional is shown and its gradient is obtained. Finally, a necessary
optimality condition in variational inequality form for the optimal control
problem is given.

References

  • 1. Vorontsov M. A. and Shmalgauzen V. I., The Principles of Adaptive Optics, Izdatel’stvo Nauka, Moscow, 1985 (in Russian).
  • 2. Yagubov G.Y., Ibrahimov N.S. The optimal control problem for a time-dependent equation of quasi-optics I, Sat: "Problems of Math. and wholesale. Management ", Baku, 2001, pp. 49-57
  • 3. Ibrahimov N.S., On the existence of solutions for the identification problem for the unsteady boundary observation equation quasioptics, Bulletin of the Lankaran State. Univ. Ser. Science, 2010, Lankaran, p. 27-44.
  • 4. Ibrahimov N.S., The task of identifying non-stationary equation for the quasi-optics, Tauride Journal of Computer Science and Mathematics, 2010, № 2, p. 45-55.
  • 5. Ibrahimov N.S., On a problem of identification on the final observation for linear time-dependent equation quasioptics, Journal of Computational and Applied Mathematics, Kiev. Zap them. Shevchenko, 2010, № 4, p. 26-37. 6. Lions J.-L., Optimal control of systems governed by partial differential equations, Springer-Verlag, 1972. p 416 .
  • 7. Iskenderov A.D., Matematiksel fiziğin çok boyutlu denklemleri için ters problemlerin varyasyonel formülasyonu, Dokl. АN SSSR, 1984, c. 274, № 3, s.531-533.
  • 8. Iskenderov A.D . Mahmudov N.M., Kuantum Mekanik sistemlerin Lions fonksiyoneli kriterli optimal kontrolü, - Izv.AN. Azerb. SSR, Serie fiz. tekn. mat. Bilimleri, 1995,c. XVI, №5-6, s. 30-35.
  • 9. Mahmudov N.M., Reel katsayılı Schrödinger denklemi için bir optimal kontrol problemi, Izv. Vuzov., 2010, № 11, s. 31-40.
  • 10. Ladyzhenskaya O.A. “ The Boundary value problems of mathematical physics” Springer Verlag, (1985).
  • 11. Iskenderov A.D., Ibrahimov N.S., The initial-boundary value problems for the unsteady equation quasioptics, Bulletin of the Lankaran State. Univ. Ser. Science, 2009, Lankaran, p. 47-66
  • 12. Yoshida K., Functional analysis, Springer-Verlag, 1967.
  • 13. Goebel M., On existence of optimal control, Math. Nachr.,1979, vol.93(1), pp. 67-73.
  • 14.Vasilyev F.P., Methods of solving for extremal problems, Nauka, Moscow, 1981, p. 400.
There are 13 citations in total.

Details

Journal Section Articles
Authors

Gabil Yagub This is me

Nigar Yıldırım Aksoy

Eray Aksoy This is me

Publication Date December 31, 2014
Submission Date September 15, 2014
Acceptance Date November 17, 2014
Published in Issue Year 2014 Volume: 1 Issue: 1

Cite

APA Yagub, G., Yıldırım Aksoy, N., & Aksoy, E. (2014). KUAZİ OPTİĞİN DURGUN OLMAYAN DENKLEMİ İÇİN BİR OPTİMAL KONTROL PROBLEMİ. Caucasian Journal of Science, 1(1), 73-80.

dizin1.png dizin2.png dizin3.png  dizin5.png dizin6.png dizin7.png