Research Article
BibTex RIS Cite

Conformational and Vibrational Analysis of Chalcone (E)-3-(Furan-2-yl)-1-Phenylprop-2-en-1-one by Density Functional Theory and ab initio Hartree-Fock

Year 2021, Volume: 8 Issue: 2, 148 - 164, 31.12.2021
https://doi.org/10.48138/cjo.1025061

Abstract

The potential energy curves (PEC) of 2 Chalcone (E)-3-(Furan-2-yl)-1-Phenylprop-2-en-1-one (1) were calculated as a function dihedral angle φ(C8-C9-C10-O1) at both ab initio Hartree–Fock (HF) and Density Functional Theory (DFT) using the B3LYP functional together with 6-311++G (d,p) basis set and the syn- and anti-conformers corresponding low energy conformers were determined. The optimized molecular structures, vibrational wavenumbers of the syn- and anti-conformers of title molecule were obtained with the two methods mentioned above. The 1H- NMR and 13C-NMR chemical shift values and frontier molecular orbitals (FMOs) were computed from the optimized structure of both conformers by DFT/B3LYP and HF methods with 6-311++G(d,p) basis set. Also, UV-Vis spectrum of both conformers ware calculated in gas phase via TD-DFT/ B3LYP/6-311++G (d,p) calculation. The equilibrium state (ground state) dipole moment values of the anti and syn conformer were calculated as 3.33 and 3.01 Debye by B3LYP/6-311++ G(d,p) and 4.05 and 3.88 Debye by ab initio HF/6-311++ G(d,p) method. The calculated geometric parameters (bond lengths and bond-dihedral angles) of the molecule were compared with the experimental values in the literature and they were found to be in good agreement. The output chk.file generated from calculation file was used to visualize the electrostatic potential map, and HOMO-LUMO orbitals using GaussView5.0.9 program.

References

  • Akhtar, M.N., Sakeh, N.M., Zareen, S., Gul, S., Lo, K.M., Ul-Haq, Z., Shah, S.A.A., Ahmad, S. (2015). Design and synthesis of chalcone derivatives as potent tyrosinase inhibitors and their structural activity relationship, J. Mol. Struct. 1085 97–103.
  • Badshah, S., Naeem, A. (2016) Bioactive Thiazine and Benzothiazine Derivatives: Green Synthesis Methods and Their Medicinal Importance. Molecules. 21, 1054.
  • Batovska, D., Parushev, S., Stamboliyska, B., Tsvetkova, I., Ninova, M., Najdenski, H. (2009). Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted. Eur J Med Chem 44: 2211-2218, 2009.
  • Becke, A. D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098–3100.
  • Becke, A. D., 1993. Density-Functional Thermochemistry .3. The Role of Exact Exchange. J. Chem. Phys., 98 (7): 5648-5652.
  • Bhat, M. A., Khan, A. A., Al-Omar, M. A., Khan, A. A. (2017), “Synthesis and anti-candidal activity of some new pyrazoline derivatives,” Biomedical Research, vol. 28, pp. 3082–3087. Çelik, F., Ustabas¸ R., Süleymanoglu,N., Direkel, S., Güler, H. I., Ünver, Y. (2021). 2,3-triazole derivative: Synthesis, characterization, DFT, molecular docking study and antibacterial-antileishmanial activities Journal of the Indian Chemical Society 98.
  • Dennington, R., Keith T., Millam, J. (2009). Semichem Inc., GaussView, Version 5, Shawnee Mission KS,
  • Domínguez, J.N., León, C., Rodrigues, J., Domínguez, N.G.D., Gut, J., Rosenthal, P.J. (2005). Synthesis and antimalarial activity of sulfonamide chalcone derivatives, Il Far maco 60 (4), 307–311.
  • Farooq, S., Ngaini, Z., Mortadza N. A. (2020) Microwave-assisted Synthesis and Molecular Docking Study of Heteroaromatic Chalcone Derivatives as Potential Antibacterial Agents. Bull. Korean Chem. Soc. Vol. 41, 918–924.
  • Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, et al., 2009. Gaussian Inc., (Wallingford, CT).
  • Govindarajan, M., Salgado-Morán, G., Montes Romero, P., Gerli Candi, L. 2018). A Theoretıcal Quantum Study of The Electronıc Propertıes of Mentoxy Dıchloro Phosphorous J. Chil. Chem. Soc.vol.63, 3887-3897.
  • Herencia, F., Ferrandiz, M.L., Ubeda, A., Domínguez, J.N., Charris, J.E., Lobo, G.M., Alcaraz, M.J. (1998). Synthesis and anti-inflammatory activity of chalcone derivatives, Bioorg. Med. Chem. Lett. 8 (10), 1169–1174.
  • Hsieh, C.T., Hsieh, T. J., El-Shazly, M., Chuang, D.W., Tsai, Y. H., Yen, C.T., Wu, S. F., Wu, Y. C., Chang, F. R. (2012). Synthesis of chalcone derivatives as poten tial anti-diabetic agents, Bioorg. Med. chem. Lett. 22 (12), 3912–3915.
  • Jamroz, M. H. (2004) Vibrational Energy Distribution Analysis VEDA Computer program. Poland
  • Jayasinghe, L., Rupasinghe, G.K., Hara, N., Fujimoto, Y. (2006) Geranylated phenolic constituents from the fruits of Artocarpus nobilis. Phytochemistry 67: 1353-1358.
  • Kaur, N., Kishore, D. (2013). Application of chalcones in heterocycles synthesis:Synthesis of 2-(isoxazolo, pyrazolo and pyrimido) substitutedanalogues of 1,4-benzodiazepin-5-carboxamides linkedthrough an oxyphenyl bridge. J. Chem. Sci. 125, 555.
  • Kohn, W., Sham, L.J.(1965) Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 A1133–A1138.
  • Kumar, S.K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N.E., Khan, S.R., (2003). Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitu-mor agents, J. med. Chem. 46 (14) 2813–2815.
  • Lee, C. T., Yang, W. T., Parr, R. G. (1988). Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785-789
  • Liu, M., Wilairat, P., Go, M.L. (2001). Antimalarial alkoxylated and hydroxylated chalcones: Structure-activity relationship analysis. J Med Chem 44 (25): 4443-4452.
  • Middleton, E.; Kandaswami, C.; Theoharides, T. C. (2000) The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev,52, 673-751.
  • Nowakowska, Z., A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem. 2007, 42, 125-137.
  • Ravichandran, R., Rajendran, M., Devapiriam, D.(2013). Studies on chalcone derivatives antioxidant and stability constant. J Chem Bio Phy Sci Sec A 3 (4): 2446-2458.
  • Reddy, L.S.S., Raju, M.B. and Sridhar, C. (2016). Novel Pyrazolınes: Synthesıs and Evaluatıon of Theır Derıvatıves wıth Antıcancer and Antı-Inflammatory Actıvıtıes. Int J Pharm Pharm Sci 8, 247.
  • Saxena, H.O., Faridi, U., Kumar, J.K., Luqman, S., Darokar, M.P., Shanker, K., Chanotiya, C.S., Gupta, M.M., Negi, A.S. (2007) Synthesis of chalcone derivatives on steroidal framework and their anticancer activities, Steroids 72 (13) 892–900. Shakil, N.A., Singh, M.K., Sathiyendiran, M., Kumar, J., Padaria, J.C. (2013) Microwave synthesis, characterization and bio-efficacy evaluation of novel chalcone based 6-carbethoxy-2-cyclohexen-1-one and 2H-indazol-3-ol derivatives. Eur. J. Med. Chem. 120–31.
  • Tanaka, H., Nakamura, S., Onda, K., Tazaki, T., Hirano, T. (2009). Sofalcone, an anti-ulcer chalcone derivative, suppresses inflammatory crosstalk between macrophages and adipocytes and adipocyte differentiation: implication of heme-oxygenase-1 induction. Biochem Biophys Res Commun 381: 566-571.
  • Vazquez-Vuelvas, O.F., Enriquez-Figueroa, R.´ A., Garcia-Ortega, H., Flores-Alamo, M., Pineda-Contreras, A. (2015). C rystal structure of the chalcone (E)-3-(furan-2-yl)- 1-phenylprop-2-en-1-one. Acta Cryst. E71, 161–164.
Year 2021, Volume: 8 Issue: 2, 148 - 164, 31.12.2021
https://doi.org/10.48138/cjo.1025061

Abstract

References

  • Akhtar, M.N., Sakeh, N.M., Zareen, S., Gul, S., Lo, K.M., Ul-Haq, Z., Shah, S.A.A., Ahmad, S. (2015). Design and synthesis of chalcone derivatives as potent tyrosinase inhibitors and their structural activity relationship, J. Mol. Struct. 1085 97–103.
  • Badshah, S., Naeem, A. (2016) Bioactive Thiazine and Benzothiazine Derivatives: Green Synthesis Methods and Their Medicinal Importance. Molecules. 21, 1054.
  • Batovska, D., Parushev, S., Stamboliyska, B., Tsvetkova, I., Ninova, M., Najdenski, H. (2009). Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted. Eur J Med Chem 44: 2211-2218, 2009.
  • Becke, A. D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098–3100.
  • Becke, A. D., 1993. Density-Functional Thermochemistry .3. The Role of Exact Exchange. J. Chem. Phys., 98 (7): 5648-5652.
  • Bhat, M. A., Khan, A. A., Al-Omar, M. A., Khan, A. A. (2017), “Synthesis and anti-candidal activity of some new pyrazoline derivatives,” Biomedical Research, vol. 28, pp. 3082–3087. Çelik, F., Ustabas¸ R., Süleymanoglu,N., Direkel, S., Güler, H. I., Ünver, Y. (2021). 2,3-triazole derivative: Synthesis, characterization, DFT, molecular docking study and antibacterial-antileishmanial activities Journal of the Indian Chemical Society 98.
  • Dennington, R., Keith T., Millam, J. (2009). Semichem Inc., GaussView, Version 5, Shawnee Mission KS,
  • Domínguez, J.N., León, C., Rodrigues, J., Domínguez, N.G.D., Gut, J., Rosenthal, P.J. (2005). Synthesis and antimalarial activity of sulfonamide chalcone derivatives, Il Far maco 60 (4), 307–311.
  • Farooq, S., Ngaini, Z., Mortadza N. A. (2020) Microwave-assisted Synthesis and Molecular Docking Study of Heteroaromatic Chalcone Derivatives as Potential Antibacterial Agents. Bull. Korean Chem. Soc. Vol. 41, 918–924.
  • Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, et al., 2009. Gaussian Inc., (Wallingford, CT).
  • Govindarajan, M., Salgado-Morán, G., Montes Romero, P., Gerli Candi, L. 2018). A Theoretıcal Quantum Study of The Electronıc Propertıes of Mentoxy Dıchloro Phosphorous J. Chil. Chem. Soc.vol.63, 3887-3897.
  • Herencia, F., Ferrandiz, M.L., Ubeda, A., Domínguez, J.N., Charris, J.E., Lobo, G.M., Alcaraz, M.J. (1998). Synthesis and anti-inflammatory activity of chalcone derivatives, Bioorg. Med. Chem. Lett. 8 (10), 1169–1174.
  • Hsieh, C.T., Hsieh, T. J., El-Shazly, M., Chuang, D.W., Tsai, Y. H., Yen, C.T., Wu, S. F., Wu, Y. C., Chang, F. R. (2012). Synthesis of chalcone derivatives as poten tial anti-diabetic agents, Bioorg. Med. chem. Lett. 22 (12), 3912–3915.
  • Jamroz, M. H. (2004) Vibrational Energy Distribution Analysis VEDA Computer program. Poland
  • Jayasinghe, L., Rupasinghe, G.K., Hara, N., Fujimoto, Y. (2006) Geranylated phenolic constituents from the fruits of Artocarpus nobilis. Phytochemistry 67: 1353-1358.
  • Kaur, N., Kishore, D. (2013). Application of chalcones in heterocycles synthesis:Synthesis of 2-(isoxazolo, pyrazolo and pyrimido) substitutedanalogues of 1,4-benzodiazepin-5-carboxamides linkedthrough an oxyphenyl bridge. J. Chem. Sci. 125, 555.
  • Kohn, W., Sham, L.J.(1965) Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 A1133–A1138.
  • Kumar, S.K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N.E., Khan, S.R., (2003). Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitu-mor agents, J. med. Chem. 46 (14) 2813–2815.
  • Lee, C. T., Yang, W. T., Parr, R. G. (1988). Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785-789
  • Liu, M., Wilairat, P., Go, M.L. (2001). Antimalarial alkoxylated and hydroxylated chalcones: Structure-activity relationship analysis. J Med Chem 44 (25): 4443-4452.
  • Middleton, E.; Kandaswami, C.; Theoharides, T. C. (2000) The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev,52, 673-751.
  • Nowakowska, Z., A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem. 2007, 42, 125-137.
  • Ravichandran, R., Rajendran, M., Devapiriam, D.(2013). Studies on chalcone derivatives antioxidant and stability constant. J Chem Bio Phy Sci Sec A 3 (4): 2446-2458.
  • Reddy, L.S.S., Raju, M.B. and Sridhar, C. (2016). Novel Pyrazolınes: Synthesıs and Evaluatıon of Theır Derıvatıves wıth Antıcancer and Antı-Inflammatory Actıvıtıes. Int J Pharm Pharm Sci 8, 247.
  • Saxena, H.O., Faridi, U., Kumar, J.K., Luqman, S., Darokar, M.P., Shanker, K., Chanotiya, C.S., Gupta, M.M., Negi, A.S. (2007) Synthesis of chalcone derivatives on steroidal framework and their anticancer activities, Steroids 72 (13) 892–900. Shakil, N.A., Singh, M.K., Sathiyendiran, M., Kumar, J., Padaria, J.C. (2013) Microwave synthesis, characterization and bio-efficacy evaluation of novel chalcone based 6-carbethoxy-2-cyclohexen-1-one and 2H-indazol-3-ol derivatives. Eur. J. Med. Chem. 120–31.
  • Tanaka, H., Nakamura, S., Onda, K., Tazaki, T., Hirano, T. (2009). Sofalcone, an anti-ulcer chalcone derivative, suppresses inflammatory crosstalk between macrophages and adipocytes and adipocyte differentiation: implication of heme-oxygenase-1 induction. Biochem Biophys Res Commun 381: 566-571.
  • Vazquez-Vuelvas, O.F., Enriquez-Figueroa, R.´ A., Garcia-Ortega, H., Flores-Alamo, M., Pineda-Contreras, A. (2015). C rystal structure of the chalcone (E)-3-(furan-2-yl)- 1-phenylprop-2-en-1-one. Acta Cryst. E71, 161–164.
There are 27 citations in total.

Details

Primary Language English
Subjects Environmental Sciences
Journal Section Caucasian Journal of Science
Authors

Güventürk Uğurlu 0000-0003-4171-7879

Publication Date December 31, 2021
Submission Date November 17, 2021
Acceptance Date December 28, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Uğurlu, G. (2021). Conformational and Vibrational Analysis of Chalcone (E)-3-(Furan-2-yl)-1-Phenylprop-2-en-1-one by Density Functional Theory and ab initio Hartree-Fock. Caucasian Journal of Science, 8(2), 148-164. https://doi.org/10.48138/cjo.1025061

dizin1.png dizin2.png dizin3.png  dizin5.png dizin6.png dizin7.png