Research Article
BibTex RIS Cite
Year 2024, Volume: 11 Issue: 2, 105 - 116, 31.12.2024
https://doi.org/10.48138/cjo.1559402

Abstract

References

  • Adarme-Vega, T. C., Lim, D. K., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11, 96.
  • Adarme-Vega, T. C., Thomas-Hall, S. R., & Schenk, P. M. (2014). Towards sustainable sources for omega-3 fatty acids production. Current Opinion in Biotechnology, 26, 14-18.
  • Alonso, D. L., Segura del Castillo, C. I., Grima, E. M., & Cohen, Z. (1996). First insights into improvement of eicosapentaenoic acid content in Phaeodactylum tricornutum (Bacillariophyceae) by induced mutagenesis. Journal of Phycology, 32, 339-345.
  • Banerjee, A., Banerjee, C., Negi, S., Chang, J. S., & Shukla, P. (2018). Improvements in algal lipid production: a systems biology and gene editing approach. Critical Reviews in Biotechnology, 38(3), 369-385.
  • Bougaran, G., Rouxel, C., Dubois, N., Kaas, R., Grouas, S., & Pruvost, E. (2012). Enhancement of neutral lipid productivity in the microalga Isochrysis affinis Galbana (T-Iso) by a mutation-selection procedure. Biotechnology and Bioengineering, 109, 2737-2745.
  • Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557-577.
  • Brown, M. R., Jeffrey, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315-331.
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294-306.
  • Deckelbaum, R. J., & Torrejon, C. (2012). The omega-3 fatty acid nutritional landscape: Health benefits and sources. The Journal of Nutrition, 142, 587-591.
  • Dempster, T. A., & Sommerfeld, M. R. (1998). Effects of environmental conditions on growth and lipid accumulation in Nitzschia communis (Bacillariophyceae). Journal of Phycology, 34, 712-721.
  • Doughman, S. D., Krupanidhi, S., & Sanjeevi, C. B. (2007). Omega-3 fatty acids for nutrition and medicine: Considering microalgae oil as a vegetarian source of EPA and DHA. Current Diabetes Reviews, 3, 198-203.
  • Garcia, J. L., de Vicente, M., & Galán, B. (2017). Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology, 10, 1017-1024.
  • Gao, Y., Cui, Y., Xiong, W., Li, X., & Wu, Q. (2009). Effect of UV-C on algal evolution and differences in growth rate, pigmentation, and photosynthesis between prokaryotic and eukaryotic algae. Photochemistry and Photobiology, 85, 774-782.
  • Gupta, A., Barrow, C. J., & Puri, M. (2012). Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils. Biotechnology Advances, 30, 1733-1745.
  • Guzman, H. M., de la Jara Valido, A., Duarte, L. C., & Presmanes, K. F. (2010). Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions. Aquaculture International, 18(2), 189-199.
  • Han, Y., Wen, Q., Chen, Z., & Li, P. (2011). Review of methods used for microalgal lipid-content analysis. Energy Procedia, 12, 944-950.
  • Jiang, Y., & Chen, F. (2000a). Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochemistry, 35(10), 1205-1209.
  • Jiang, Y., & Chen, F. (2000b). Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii. Journal of the American Oil Chemists' Society, 77(6), 613-617.
  • Kay, R. A., & Barton, L. L. (1991). Microalgae as food and supplement. Critical Reviews in Food Science and Nutrition, 30, 555-573.
  • Khozin-Goldberg, I., Iskandarov, U., & Cohen, Z. (2011). LC-PUFA from photosynthetic microalgae: Occurrence, biosynthesis, and prospects in biotechnology. Applied Microbiology and Biotechnology, 91, 905.
  • Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., & Chu, D. T. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8, 16-24.
  • Lenihan-Geels, G., Bishop, K. S., & Ferguson, L. R. (2013). Alternative sources of omega-3 fats: Can we find a sustainable substitute for fish? Nutrients, 5, 1301-1315.
  • Lian, M., Huang, H., Ren, L., Ji, X., Zhu, J., & Zheng, X. (2010). Increase of docosahexaenoic acid production by Schizochytrium sp. through mutagenesis and enzyme assay. Applied Biochemistry and Biotechnology, 162, 935-941.
  • Lim, D. K., Schuhmann, H., Sharma, K., & Schenk, P. M. (2015). Isolation of high-lipid Tetraselmis suecica strains following repeated UV-C mutagenesis, FACS, and high-throughput growth selection. BioEnergy Research, 8, 750-759.
  • Liu, S., Zhao, Y., Liu, L., Ao, X., Ma, L., & Zhang, B. (2015). Improving cell growth and lipid accumulation in green microalgae Chlorella sp. via UV irradiation. Applied Biochemistry and Biotechnology, 175, 3507-3518.
  • Lv, X., Zou, L., Sun, B., Wang, J., & Sun, M. Y. (2010). Variations in lipid yields and compositions of marine microalgae during cell growth and respiration, and within intracellular structures. Journal of Experimental Marine Biology and Ecology, 391(1-2), 73-83.
  • Manandhar-Shrestha, K., & Hildebrand, M. (2013). Development of flow cytometric procedures for the efficient isolation of improved lipid accumulation mutants in a Chlorella sp. microalga. Journal of Applied Phycology, 25(6), 1643-1651.
  • Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217-232.
  • Meireles, L. A., Guedes, A., & Malcata, F. X. (2003). Increase of the yields of eicosapentaenoic and docosahexaenoic acids by the microalga Phaeodactylum tricornutum through manipulation of environmental parameters. Process Biochemistry, 38(4), 537-549.
  • Mendoza, H., De la Jara, A., Freijanes, K., Carmona, L., Ramos, A. A., & et al. (2008). Characterization of Dunaliella salina strains by flow cytometry: A new approach to select carotenoid hyperproducing strains. Electronic Journal of Biotechnology, 11(4), 5-6.
  • Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635-648.
  • Raghukumar, S. (2008). Thraustochytrid marine protists: Production of PUFAs and other emerging technologies. Marine Biotechnology, 10(6), 631-640.
  • Rao, A. R., Dayananda, C., Sarada, R., Shamala, T. R., & Ravishankar, G. A. (2007). Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technology, 98(3), 560-564.
  • Rios, L. F., Klein, B. C., Luz Jr, L. F., Maciel Filho, R., & Maciel, M. W. (2015). Nitrogen starvation for lipid accumulation in the microalga species Desmodesmus sp. Applied Biochemistry and Biotechnology, 175(1), 469-476.
  • Ryckebosch, E., Bruneel, C., Muylaert, K., & Foubert, I. (2012). Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technology, 24(6), 128-130.
  • Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709-722.
  • Schlechtriem, C., Henderson, R. J., & Tocher, D. R. (2008). A critical assessment of different transmethylation procedures commonly employed in the fatty acid analysis of aquatic organisms. Limnology and Oceanography: Methods, 6, 523-531.
  • Servel, M. O., Claire, C., Derrien, A., Coiffard, L., & De Roeck-Holtzhauer, Y. (1994). Fatty acid composition of some marine microalgae. Phytochemistry, 36(3), 691-693.
  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96.
  • Tale, M. P., devi Singh, R., Kapadnis, B. P., & Ghosh, S. B. (2018). Effect of gamma irradiation on lipid accumulation and expression of regulatory genes involved in lipid biosynthesis in Chlorella sp. Journal of applied phycology, 30, 277-286.
  • Trovão, M., Schüler, L. M., Machado, A., Bombo, G., Navalho, S., Barros, A., ... & Varela, J. (2022). Random mutagenesis as a promising tool for microalgal strain improvement towards industrial production. Marine drugs, 20(7), 440.
  • Unkefer, C. A., Sayre, R. T., Magnuson, J. K., Anderson, D. B., Baxter, I., & et al. (2017). Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research, 22, 187-215.
  • Viso, A. C., & Marty, J. C. (1993). Fatty acids from 28 marine microalgae. Phytochemistry, 34(10), 1521-1533.
  • Wu, L. F., Chen, P. C., & Lee, C. M. (2013). The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. International Biodeterioration and Biodegradation, 85, 506-510.
  • Yokochi, T., Honda, D., Higashihara, T., & Nakahara, T. (1998). Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Applied Microbiology and Biotechnology, 49(1), 72-76.
  • Zhukova, N. V., & Aizdaicher, N. A. (1995). Fatty acid composition of 15 species of marine microalgae. Phytochemistry, 39(2), 351-356.

Enhancement of Docosahexaenoic Acid Production by UV Mutagenesis Coupled with Flow Cytometry Screening in Schizochytrium sp. S31

Year 2024, Volume: 11 Issue: 2, 105 - 116, 31.12.2024
https://doi.org/10.48138/cjo.1559402

Abstract

Microalgae have garnered significant attention for their potential in therapeutic and pharmacological applications due to their rich bioactive compounds, including omega-3 fatty acids. Among these, Schizochytrium sp. has been extensively studied for its ability to produce high levels of these valuable lipids. The aim of this study was to create a Schizochytrium sp. S31 mutant library by generating UV-induced random mutations in the genome and then screening for mutants with high lipid accumulation using flow cytometry-based technology. A combination of random mutagenesis and flow cytometry-based selection was employed to isolate high-yield lipid-accumulating mutants of Schizochytrium sp. S31. The results revealed that Mutant 1 exhibited a 28.4% increase in total lipid content, while Mutant 2 demonstrated a 10.8% increase relative to the wild type. The results were corroborated by gas chromatography-mass spectrometry, which indicated that the cultures treated with UV light (for 30 seconds) exhibited higher levels of DHA than the untreated controls. The percentage of DHA increased by 17.9% and 12.1% in two distinct mutants relative to the wild type.

References

  • Adarme-Vega, T. C., Lim, D. K., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11, 96.
  • Adarme-Vega, T. C., Thomas-Hall, S. R., & Schenk, P. M. (2014). Towards sustainable sources for omega-3 fatty acids production. Current Opinion in Biotechnology, 26, 14-18.
  • Alonso, D. L., Segura del Castillo, C. I., Grima, E. M., & Cohen, Z. (1996). First insights into improvement of eicosapentaenoic acid content in Phaeodactylum tricornutum (Bacillariophyceae) by induced mutagenesis. Journal of Phycology, 32, 339-345.
  • Banerjee, A., Banerjee, C., Negi, S., Chang, J. S., & Shukla, P. (2018). Improvements in algal lipid production: a systems biology and gene editing approach. Critical Reviews in Biotechnology, 38(3), 369-385.
  • Bougaran, G., Rouxel, C., Dubois, N., Kaas, R., Grouas, S., & Pruvost, E. (2012). Enhancement of neutral lipid productivity in the microalga Isochrysis affinis Galbana (T-Iso) by a mutation-selection procedure. Biotechnology and Bioengineering, 109, 2737-2745.
  • Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557-577.
  • Brown, M. R., Jeffrey, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315-331.
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294-306.
  • Deckelbaum, R. J., & Torrejon, C. (2012). The omega-3 fatty acid nutritional landscape: Health benefits and sources. The Journal of Nutrition, 142, 587-591.
  • Dempster, T. A., & Sommerfeld, M. R. (1998). Effects of environmental conditions on growth and lipid accumulation in Nitzschia communis (Bacillariophyceae). Journal of Phycology, 34, 712-721.
  • Doughman, S. D., Krupanidhi, S., & Sanjeevi, C. B. (2007). Omega-3 fatty acids for nutrition and medicine: Considering microalgae oil as a vegetarian source of EPA and DHA. Current Diabetes Reviews, 3, 198-203.
  • Garcia, J. L., de Vicente, M., & Galán, B. (2017). Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology, 10, 1017-1024.
  • Gao, Y., Cui, Y., Xiong, W., Li, X., & Wu, Q. (2009). Effect of UV-C on algal evolution and differences in growth rate, pigmentation, and photosynthesis between prokaryotic and eukaryotic algae. Photochemistry and Photobiology, 85, 774-782.
  • Gupta, A., Barrow, C. J., & Puri, M. (2012). Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils. Biotechnology Advances, 30, 1733-1745.
  • Guzman, H. M., de la Jara Valido, A., Duarte, L. C., & Presmanes, K. F. (2010). Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions. Aquaculture International, 18(2), 189-199.
  • Han, Y., Wen, Q., Chen, Z., & Li, P. (2011). Review of methods used for microalgal lipid-content analysis. Energy Procedia, 12, 944-950.
  • Jiang, Y., & Chen, F. (2000a). Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochemistry, 35(10), 1205-1209.
  • Jiang, Y., & Chen, F. (2000b). Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii. Journal of the American Oil Chemists' Society, 77(6), 613-617.
  • Kay, R. A., & Barton, L. L. (1991). Microalgae as food and supplement. Critical Reviews in Food Science and Nutrition, 30, 555-573.
  • Khozin-Goldberg, I., Iskandarov, U., & Cohen, Z. (2011). LC-PUFA from photosynthetic microalgae: Occurrence, biosynthesis, and prospects in biotechnology. Applied Microbiology and Biotechnology, 91, 905.
  • Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., & Chu, D. T. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8, 16-24.
  • Lenihan-Geels, G., Bishop, K. S., & Ferguson, L. R. (2013). Alternative sources of omega-3 fats: Can we find a sustainable substitute for fish? Nutrients, 5, 1301-1315.
  • Lian, M., Huang, H., Ren, L., Ji, X., Zhu, J., & Zheng, X. (2010). Increase of docosahexaenoic acid production by Schizochytrium sp. through mutagenesis and enzyme assay. Applied Biochemistry and Biotechnology, 162, 935-941.
  • Lim, D. K., Schuhmann, H., Sharma, K., & Schenk, P. M. (2015). Isolation of high-lipid Tetraselmis suecica strains following repeated UV-C mutagenesis, FACS, and high-throughput growth selection. BioEnergy Research, 8, 750-759.
  • Liu, S., Zhao, Y., Liu, L., Ao, X., Ma, L., & Zhang, B. (2015). Improving cell growth and lipid accumulation in green microalgae Chlorella sp. via UV irradiation. Applied Biochemistry and Biotechnology, 175, 3507-3518.
  • Lv, X., Zou, L., Sun, B., Wang, J., & Sun, M. Y. (2010). Variations in lipid yields and compositions of marine microalgae during cell growth and respiration, and within intracellular structures. Journal of Experimental Marine Biology and Ecology, 391(1-2), 73-83.
  • Manandhar-Shrestha, K., & Hildebrand, M. (2013). Development of flow cytometric procedures for the efficient isolation of improved lipid accumulation mutants in a Chlorella sp. microalga. Journal of Applied Phycology, 25(6), 1643-1651.
  • Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217-232.
  • Meireles, L. A., Guedes, A., & Malcata, F. X. (2003). Increase of the yields of eicosapentaenoic and docosahexaenoic acids by the microalga Phaeodactylum tricornutum through manipulation of environmental parameters. Process Biochemistry, 38(4), 537-549.
  • Mendoza, H., De la Jara, A., Freijanes, K., Carmona, L., Ramos, A. A., & et al. (2008). Characterization of Dunaliella salina strains by flow cytometry: A new approach to select carotenoid hyperproducing strains. Electronic Journal of Biotechnology, 11(4), 5-6.
  • Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635-648.
  • Raghukumar, S. (2008). Thraustochytrid marine protists: Production of PUFAs and other emerging technologies. Marine Biotechnology, 10(6), 631-640.
  • Rao, A. R., Dayananda, C., Sarada, R., Shamala, T. R., & Ravishankar, G. A. (2007). Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technology, 98(3), 560-564.
  • Rios, L. F., Klein, B. C., Luz Jr, L. F., Maciel Filho, R., & Maciel, M. W. (2015). Nitrogen starvation for lipid accumulation in the microalga species Desmodesmus sp. Applied Biochemistry and Biotechnology, 175(1), 469-476.
  • Ryckebosch, E., Bruneel, C., Muylaert, K., & Foubert, I. (2012). Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technology, 24(6), 128-130.
  • Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709-722.
  • Schlechtriem, C., Henderson, R. J., & Tocher, D. R. (2008). A critical assessment of different transmethylation procedures commonly employed in the fatty acid analysis of aquatic organisms. Limnology and Oceanography: Methods, 6, 523-531.
  • Servel, M. O., Claire, C., Derrien, A., Coiffard, L., & De Roeck-Holtzhauer, Y. (1994). Fatty acid composition of some marine microalgae. Phytochemistry, 36(3), 691-693.
  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96.
  • Tale, M. P., devi Singh, R., Kapadnis, B. P., & Ghosh, S. B. (2018). Effect of gamma irradiation on lipid accumulation and expression of regulatory genes involved in lipid biosynthesis in Chlorella sp. Journal of applied phycology, 30, 277-286.
  • Trovão, M., Schüler, L. M., Machado, A., Bombo, G., Navalho, S., Barros, A., ... & Varela, J. (2022). Random mutagenesis as a promising tool for microalgal strain improvement towards industrial production. Marine drugs, 20(7), 440.
  • Unkefer, C. A., Sayre, R. T., Magnuson, J. K., Anderson, D. B., Baxter, I., & et al. (2017). Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research, 22, 187-215.
  • Viso, A. C., & Marty, J. C. (1993). Fatty acids from 28 marine microalgae. Phytochemistry, 34(10), 1521-1533.
  • Wu, L. F., Chen, P. C., & Lee, C. M. (2013). The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. International Biodeterioration and Biodegradation, 85, 506-510.
  • Yokochi, T., Honda, D., Higashihara, T., & Nakahara, T. (1998). Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Applied Microbiology and Biotechnology, 49(1), 72-76.
  • Zhukova, N. V., & Aizdaicher, N. A. (1995). Fatty acid composition of 15 species of marine microalgae. Phytochemistry, 39(2), 351-356.
There are 46 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Articles
Authors

Nurcan Vardar Yel 0000-0003-0994-5871

Emrah Yelboğa 0000-0001-7374-9969

Nevin Gül Karagüler 0000-0002-2300-9484

Melek Tüter 0000-0002-8052-6795

Publication Date December 31, 2024
Submission Date October 1, 2024
Acceptance Date December 24, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

APA Vardar Yel, N., Yelboğa, E., Gül Karagüler, N., Tüter, M. (2024). Enhancement of Docosahexaenoic Acid Production by UV Mutagenesis Coupled with Flow Cytometry Screening in Schizochytrium sp. S31. Caucasian Journal of Science, 11(2), 105-116. https://doi.org/10.48138/cjo.1559402

dizin1.png dizin2.png dizin3.png  dizin5.png dizin6.png dizin7.png