Year 2024,
Volume: 11 Issue: 2, 105 - 116, 31.12.2024
Nurcan Vardar Yel
,
Emrah Yelboğa
,
Nevin Gül Karagüler
,
Melek Tüter
References
- Adarme-Vega, T. C., Lim, D. K., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11, 96.
- Adarme-Vega, T. C., Thomas-Hall, S. R., & Schenk, P. M. (2014). Towards sustainable sources for omega-3 fatty acids production. Current Opinion in Biotechnology, 26, 14-18.
- Alonso, D. L., Segura del Castillo, C. I., Grima, E. M., & Cohen, Z. (1996). First insights into improvement of eicosapentaenoic acid content in Phaeodactylum tricornutum (Bacillariophyceae) by induced mutagenesis. Journal of Phycology, 32, 339-345.
- Banerjee, A., Banerjee, C., Negi, S., Chang, J. S., & Shukla, P. (2018). Improvements in algal lipid production: a systems biology and gene editing approach. Critical Reviews in Biotechnology, 38(3), 369-385.
- Bougaran, G., Rouxel, C., Dubois, N., Kaas, R., Grouas, S., & Pruvost, E. (2012). Enhancement of neutral lipid productivity in the microalga Isochrysis affinis Galbana (T-Iso) by a mutation-selection procedure. Biotechnology and Bioengineering, 109, 2737-2745.
- Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557-577.
- Brown, M. R., Jeffrey, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315-331.
- Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294-306.
- Deckelbaum, R. J., & Torrejon, C. (2012). The omega-3 fatty acid nutritional landscape: Health benefits and sources. The Journal of Nutrition, 142, 587-591.
- Dempster, T. A., & Sommerfeld, M. R. (1998). Effects of environmental conditions on growth and lipid accumulation in Nitzschia communis (Bacillariophyceae). Journal of Phycology, 34, 712-721.
- Doughman, S. D., Krupanidhi, S., & Sanjeevi, C. B. (2007). Omega-3 fatty acids for nutrition and medicine: Considering microalgae oil as a vegetarian source of EPA and DHA. Current Diabetes Reviews, 3, 198-203.
- Garcia, J. L., de Vicente, M., & Galán, B. (2017). Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology, 10, 1017-1024.
- Gao, Y., Cui, Y., Xiong, W., Li, X., & Wu, Q. (2009). Effect of UV-C on algal evolution and differences in growth rate, pigmentation, and photosynthesis between prokaryotic and eukaryotic algae. Photochemistry and Photobiology, 85, 774-782.
- Gupta, A., Barrow, C. J., & Puri, M. (2012). Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils. Biotechnology Advances, 30, 1733-1745.
- Guzman, H. M., de la Jara Valido, A., Duarte, L. C., & Presmanes, K. F. (2010). Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions. Aquaculture International, 18(2), 189-199.
- Han, Y., Wen, Q., Chen, Z., & Li, P. (2011). Review of methods used for microalgal lipid-content analysis. Energy Procedia, 12, 944-950.
- Jiang, Y., & Chen, F. (2000a). Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochemistry, 35(10), 1205-1209.
- Jiang, Y., & Chen, F. (2000b). Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii. Journal of the American Oil Chemists' Society, 77(6), 613-617.
- Kay, R. A., & Barton, L. L. (1991). Microalgae as food and supplement. Critical Reviews in Food Science and Nutrition, 30, 555-573.
- Khozin-Goldberg, I., Iskandarov, U., & Cohen, Z. (2011). LC-PUFA from photosynthetic microalgae: Occurrence, biosynthesis, and prospects in biotechnology. Applied Microbiology and Biotechnology, 91, 905.
- Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., & Chu, D. T. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8, 16-24.
- Lenihan-Geels, G., Bishop, K. S., & Ferguson, L. R. (2013). Alternative sources of omega-3 fats: Can we find a sustainable substitute for fish? Nutrients, 5, 1301-1315.
- Lian, M., Huang, H., Ren, L., Ji, X., Zhu, J., & Zheng, X. (2010). Increase of docosahexaenoic acid production by Schizochytrium sp. through mutagenesis and enzyme assay. Applied Biochemistry and Biotechnology, 162, 935-941.
- Lim, D. K., Schuhmann, H., Sharma, K., & Schenk, P. M. (2015). Isolation of high-lipid Tetraselmis suecica strains following repeated UV-C mutagenesis, FACS, and high-throughput growth selection. BioEnergy Research, 8, 750-759.
- Liu, S., Zhao, Y., Liu, L., Ao, X., Ma, L., & Zhang, B. (2015). Improving cell growth and lipid accumulation in green microalgae Chlorella sp. via UV irradiation. Applied Biochemistry and Biotechnology, 175, 3507-3518.
- Lv, X., Zou, L., Sun, B., Wang, J., & Sun, M. Y. (2010). Variations in lipid yields and compositions of marine microalgae during cell growth and respiration, and within intracellular structures. Journal of Experimental Marine Biology and Ecology, 391(1-2), 73-83.
- Manandhar-Shrestha, K., & Hildebrand, M. (2013). Development of flow cytometric procedures for the efficient isolation of improved lipid accumulation mutants in a Chlorella sp. microalga. Journal of Applied Phycology, 25(6), 1643-1651.
- Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217-232.
- Meireles, L. A., Guedes, A., & Malcata, F. X. (2003). Increase of the yields of eicosapentaenoic and docosahexaenoic acids by the microalga Phaeodactylum tricornutum through manipulation of environmental parameters. Process Biochemistry, 38(4), 537-549.
- Mendoza, H., De la Jara, A., Freijanes, K., Carmona, L., Ramos, A. A., & et al. (2008). Characterization of Dunaliella salina strains by flow cytometry: A new approach to select carotenoid hyperproducing strains. Electronic Journal of Biotechnology, 11(4), 5-6.
- Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635-648.
- Raghukumar, S. (2008). Thraustochytrid marine protists: Production of PUFAs and other emerging technologies. Marine Biotechnology, 10(6), 631-640.
- Rao, A. R., Dayananda, C., Sarada, R., Shamala, T. R., & Ravishankar, G. A. (2007). Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technology, 98(3), 560-564.
- Rios, L. F., Klein, B. C., Luz Jr, L. F., Maciel Filho, R., & Maciel, M. W. (2015). Nitrogen starvation for lipid accumulation in the microalga species Desmodesmus sp. Applied Biochemistry and Biotechnology, 175(1), 469-476.
- Ryckebosch, E., Bruneel, C., Muylaert, K., & Foubert, I. (2012). Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technology, 24(6), 128-130.
- Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709-722.
- Schlechtriem, C., Henderson, R. J., & Tocher, D. R. (2008). A critical assessment of different transmethylation procedures commonly employed in the fatty acid analysis of aquatic organisms. Limnology and Oceanography: Methods, 6, 523-531.
- Servel, M. O., Claire, C., Derrien, A., Coiffard, L., & De Roeck-Holtzhauer, Y. (1994). Fatty acid composition of some marine microalgae. Phytochemistry, 36(3), 691-693.
- Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96.
- Tale, M. P., devi Singh, R., Kapadnis, B. P., & Ghosh, S. B. (2018). Effect of gamma irradiation on lipid accumulation and expression of regulatory genes involved in lipid biosynthesis in Chlorella sp. Journal of applied phycology, 30, 277-286.
- Trovão, M., Schüler, L. M., Machado, A., Bombo, G., Navalho, S., Barros, A., ... & Varela, J. (2022). Random mutagenesis as a promising tool for microalgal strain improvement towards industrial production. Marine drugs, 20(7), 440.
- Unkefer, C. A., Sayre, R. T., Magnuson, J. K., Anderson, D. B., Baxter, I., & et al. (2017). Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research, 22, 187-215.
- Viso, A. C., & Marty, J. C. (1993). Fatty acids from 28 marine microalgae. Phytochemistry, 34(10), 1521-1533.
- Wu, L. F., Chen, P. C., & Lee, C. M. (2013). The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. International Biodeterioration and Biodegradation, 85, 506-510.
- Yokochi, T., Honda, D., Higashihara, T., & Nakahara, T. (1998). Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Applied Microbiology and Biotechnology, 49(1), 72-76.
- Zhukova, N. V., & Aizdaicher, N. A. (1995). Fatty acid composition of 15 species of marine microalgae. Phytochemistry, 39(2), 351-356.
Enhancement of Docosahexaenoic Acid Production by UV Mutagenesis Coupled with Flow Cytometry Screening in Schizochytrium sp. S31
Year 2024,
Volume: 11 Issue: 2, 105 - 116, 31.12.2024
Nurcan Vardar Yel
,
Emrah Yelboğa
,
Nevin Gül Karagüler
,
Melek Tüter
Abstract
Microalgae have garnered significant attention for their potential in therapeutic and pharmacological applications due to their rich bioactive compounds, including omega-3 fatty acids. Among these, Schizochytrium sp. has been extensively studied for its ability to produce high levels of these valuable lipids. The aim of this study was to create a Schizochytrium sp. S31 mutant library by generating UV-induced random mutations in the genome and then screening for mutants with high lipid accumulation using flow cytometry-based technology. A combination of random mutagenesis and flow cytometry-based selection was employed to isolate high-yield lipid-accumulating mutants of Schizochytrium sp. S31. The results revealed that Mutant 1 exhibited a 28.4% increase in total lipid content, while Mutant 2 demonstrated a 10.8% increase relative to the wild type. The results were corroborated by gas chromatography-mass spectrometry, which indicated that the cultures treated with UV light (for 30 seconds) exhibited higher levels of DHA than the untreated controls. The percentage of DHA increased by 17.9% and 12.1% in two distinct mutants relative to the wild type.
References
- Adarme-Vega, T. C., Lim, D. K., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11, 96.
- Adarme-Vega, T. C., Thomas-Hall, S. R., & Schenk, P. M. (2014). Towards sustainable sources for omega-3 fatty acids production. Current Opinion in Biotechnology, 26, 14-18.
- Alonso, D. L., Segura del Castillo, C. I., Grima, E. M., & Cohen, Z. (1996). First insights into improvement of eicosapentaenoic acid content in Phaeodactylum tricornutum (Bacillariophyceae) by induced mutagenesis. Journal of Phycology, 32, 339-345.
- Banerjee, A., Banerjee, C., Negi, S., Chang, J. S., & Shukla, P. (2018). Improvements in algal lipid production: a systems biology and gene editing approach. Critical Reviews in Biotechnology, 38(3), 369-385.
- Bougaran, G., Rouxel, C., Dubois, N., Kaas, R., Grouas, S., & Pruvost, E. (2012). Enhancement of neutral lipid productivity in the microalga Isochrysis affinis Galbana (T-Iso) by a mutation-selection procedure. Biotechnology and Bioengineering, 109, 2737-2745.
- Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557-577.
- Brown, M. R., Jeffrey, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315-331.
- Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294-306.
- Deckelbaum, R. J., & Torrejon, C. (2012). The omega-3 fatty acid nutritional landscape: Health benefits and sources. The Journal of Nutrition, 142, 587-591.
- Dempster, T. A., & Sommerfeld, M. R. (1998). Effects of environmental conditions on growth and lipid accumulation in Nitzschia communis (Bacillariophyceae). Journal of Phycology, 34, 712-721.
- Doughman, S. D., Krupanidhi, S., & Sanjeevi, C. B. (2007). Omega-3 fatty acids for nutrition and medicine: Considering microalgae oil as a vegetarian source of EPA and DHA. Current Diabetes Reviews, 3, 198-203.
- Garcia, J. L., de Vicente, M., & Galán, B. (2017). Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology, 10, 1017-1024.
- Gao, Y., Cui, Y., Xiong, W., Li, X., & Wu, Q. (2009). Effect of UV-C on algal evolution and differences in growth rate, pigmentation, and photosynthesis between prokaryotic and eukaryotic algae. Photochemistry and Photobiology, 85, 774-782.
- Gupta, A., Barrow, C. J., & Puri, M. (2012). Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils. Biotechnology Advances, 30, 1733-1745.
- Guzman, H. M., de la Jara Valido, A., Duarte, L. C., & Presmanes, K. F. (2010). Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions. Aquaculture International, 18(2), 189-199.
- Han, Y., Wen, Q., Chen, Z., & Li, P. (2011). Review of methods used for microalgal lipid-content analysis. Energy Procedia, 12, 944-950.
- Jiang, Y., & Chen, F. (2000a). Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochemistry, 35(10), 1205-1209.
- Jiang, Y., & Chen, F. (2000b). Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii. Journal of the American Oil Chemists' Society, 77(6), 613-617.
- Kay, R. A., & Barton, L. L. (1991). Microalgae as food and supplement. Critical Reviews in Food Science and Nutrition, 30, 555-573.
- Khozin-Goldberg, I., Iskandarov, U., & Cohen, Z. (2011). LC-PUFA from photosynthetic microalgae: Occurrence, biosynthesis, and prospects in biotechnology. Applied Microbiology and Biotechnology, 91, 905.
- Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., & Chu, D. T. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8, 16-24.
- Lenihan-Geels, G., Bishop, K. S., & Ferguson, L. R. (2013). Alternative sources of omega-3 fats: Can we find a sustainable substitute for fish? Nutrients, 5, 1301-1315.
- Lian, M., Huang, H., Ren, L., Ji, X., Zhu, J., & Zheng, X. (2010). Increase of docosahexaenoic acid production by Schizochytrium sp. through mutagenesis and enzyme assay. Applied Biochemistry and Biotechnology, 162, 935-941.
- Lim, D. K., Schuhmann, H., Sharma, K., & Schenk, P. M. (2015). Isolation of high-lipid Tetraselmis suecica strains following repeated UV-C mutagenesis, FACS, and high-throughput growth selection. BioEnergy Research, 8, 750-759.
- Liu, S., Zhao, Y., Liu, L., Ao, X., Ma, L., & Zhang, B. (2015). Improving cell growth and lipid accumulation in green microalgae Chlorella sp. via UV irradiation. Applied Biochemistry and Biotechnology, 175, 3507-3518.
- Lv, X., Zou, L., Sun, B., Wang, J., & Sun, M. Y. (2010). Variations in lipid yields and compositions of marine microalgae during cell growth and respiration, and within intracellular structures. Journal of Experimental Marine Biology and Ecology, 391(1-2), 73-83.
- Manandhar-Shrestha, K., & Hildebrand, M. (2013). Development of flow cytometric procedures for the efficient isolation of improved lipid accumulation mutants in a Chlorella sp. microalga. Journal of Applied Phycology, 25(6), 1643-1651.
- Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217-232.
- Meireles, L. A., Guedes, A., & Malcata, F. X. (2003). Increase of the yields of eicosapentaenoic and docosahexaenoic acids by the microalga Phaeodactylum tricornutum through manipulation of environmental parameters. Process Biochemistry, 38(4), 537-549.
- Mendoza, H., De la Jara, A., Freijanes, K., Carmona, L., Ramos, A. A., & et al. (2008). Characterization of Dunaliella salina strains by flow cytometry: A new approach to select carotenoid hyperproducing strains. Electronic Journal of Biotechnology, 11(4), 5-6.
- Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635-648.
- Raghukumar, S. (2008). Thraustochytrid marine protists: Production of PUFAs and other emerging technologies. Marine Biotechnology, 10(6), 631-640.
- Rao, A. R., Dayananda, C., Sarada, R., Shamala, T. R., & Ravishankar, G. A. (2007). Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technology, 98(3), 560-564.
- Rios, L. F., Klein, B. C., Luz Jr, L. F., Maciel Filho, R., & Maciel, M. W. (2015). Nitrogen starvation for lipid accumulation in the microalga species Desmodesmus sp. Applied Biochemistry and Biotechnology, 175(1), 469-476.
- Ryckebosch, E., Bruneel, C., Muylaert, K., & Foubert, I. (2012). Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technology, 24(6), 128-130.
- Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709-722.
- Schlechtriem, C., Henderson, R. J., & Tocher, D. R. (2008). A critical assessment of different transmethylation procedures commonly employed in the fatty acid analysis of aquatic organisms. Limnology and Oceanography: Methods, 6, 523-531.
- Servel, M. O., Claire, C., Derrien, A., Coiffard, L., & De Roeck-Holtzhauer, Y. (1994). Fatty acid composition of some marine microalgae. Phytochemistry, 36(3), 691-693.
- Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96.
- Tale, M. P., devi Singh, R., Kapadnis, B. P., & Ghosh, S. B. (2018). Effect of gamma irradiation on lipid accumulation and expression of regulatory genes involved in lipid biosynthesis in Chlorella sp. Journal of applied phycology, 30, 277-286.
- Trovão, M., Schüler, L. M., Machado, A., Bombo, G., Navalho, S., Barros, A., ... & Varela, J. (2022). Random mutagenesis as a promising tool for microalgal strain improvement towards industrial production. Marine drugs, 20(7), 440.
- Unkefer, C. A., Sayre, R. T., Magnuson, J. K., Anderson, D. B., Baxter, I., & et al. (2017). Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research, 22, 187-215.
- Viso, A. C., & Marty, J. C. (1993). Fatty acids from 28 marine microalgae. Phytochemistry, 34(10), 1521-1533.
- Wu, L. F., Chen, P. C., & Lee, C. M. (2013). The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. International Biodeterioration and Biodegradation, 85, 506-510.
- Yokochi, T., Honda, D., Higashihara, T., & Nakahara, T. (1998). Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Applied Microbiology and Biotechnology, 49(1), 72-76.
- Zhukova, N. V., & Aizdaicher, N. A. (1995). Fatty acid composition of 15 species of marine microalgae. Phytochemistry, 39(2), 351-356.