Research Article
BibTex RIS Cite
Year 2022, , 746 - 752, 28.09.2022
https://doi.org/10.33808/clinexphealthsci.1018541

Abstract

References

  • Guang Y, Jie Z, Feng D, Hui L. Surrogate scale for evaluating respiratory function based on complete blood count parameters. J Clin Lab Anal 2018;32(5):e22385.
  • Xing T, Pilowsky PM. Acute intermittent hypoxia in rat in vivo elicits a robust increase in tonic sympathetic nerve activity that is independent of respiratory drive. J Physiol 2010;588(Pt 16):3075-3088.
  • Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol 2014;307(10):R1181-1197.
  • Baker TL, Mitchell GS. Episodic but not continuous hypoxia elicits long-term facilitation of phrenic motor output in rats. J Physiol 2000;529 Pt 1(Pt 1):215-219.
  • Ryan S, Nolan P. Episodic hypoxia induces long-term facilitation of upper airway muscle activity in spontaneously breathing anaesthetized rats. J Physiol 2009;587(Pt 13):3329-3342.
  • Nakamura A, Olson EB Jr, Terada J, Wenninger JM, Bisgard GE, Mitchell GS. Sleep state dependence of ventilatory long-term facilitation following acute intermittent hypoxia in Lewis rats. J Appl Physiol 2010;109(2):323-331.
  • Lovett-Barr MR, Satriotomo I, Muir GD, Wilkerson JE, Hoffman MS, Vinit S, Mitchell GS. Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury. J Neurosci 2012;32(11):3591-3600.
  • Nagel MJ, Jarrard CP, Lalande S. Effect of a single session of intermittent hypoxia on erythropoietin and oxygen-carrying capacity. Int J Environ Res Public Health 2020;17(19):7257.
  • Alvarez-Martins I, Remédio L, Matias I, Diogo LN, Monteiro EC, Dias S. The impact of chronic intermittent hypoxia on hematopoiesis and the bone marrow microenvironment. Pflugers Arch 2016;468(5):919-932.
  • Linnarsson S, Björklund A, Ernfors P. Learning deficit in BDNF mutant mice. Eur J Neurosci 1997;9(12):2581-2587.
  • Wen MH, Wu MJ, Vinit S, Lee KZ. Modulation of serotonin and adenosine 2A receptors on intermittent hypoxia-induced respiratory recovery following mid-cervical contusion in the rat. J Neurotrauma 2019;36(21):2991-3004.
  • Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, Kolbeck R, Hoppe E, Oropeza-Wekerle RL, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 1999;189(5):865-870.
  • Lommatzsch M, Niewerth A, Klotz J, Schulte-Herbrüggen O, Zingler C, Schuff-Werner P, Virchow JC. Platelet and plasma BDNF in lower respiratory tract infections of the adult. Respir Med 2007;101(7):1493-1499.
  • Yamamoto H, Gurney ME. Human platelets contain brain derived neurotrophic factor. J Neurosci 1990;10(11):3469-3478.
  • Scott MKD, Quinn K, Li Q, Carroll R, Warsinske H, Vallania F, Chen S, Carns MA, Aren K, Sun J, Koloms K, Lee J, Baral J, Kropski J, Zhao H, Herzog E, Martinez FJ, Moore BB, Hinchcliff M, Denny J, Kaminski N, Herazo-Maya JD, Shah NH, Khatri P. Increased monocyte count as a cellular biomarker for poor outcomes in fibrotic diseases: a retrospective, multicenter cohort study. Lancet Respir Med 2019;7(6):497-508.
  • Colgan SP, Furuta GT, Taylor CT. Hypoxia and innate immunity: keeping up with the HIFsters. Annu Rev Immunol 2020;38:341- 363.
  • Huang YL, Hu ZD. Lower mean corpuscular hemoglobin concentration is associated with poorer outcomes in intensive care unit admitted patients with acute myocardial infarction. Ann Transl Med 2016;4(10):190.
  • Honda H, Kimachi M, Kurita N, Joki N, Nangaku M. Low rather than high mean corpuscular volume is associated with mortality in Japanese patients under hemodialysis. Sci Rep 2020;10(1):15663.
  • McDonald TP. Platelet production in hypoxic and RBCtransfused mice. Scand J Haematol 1978;20(3):213-220.
  • Berg JT, Breen EC, Fu Z, Mathieu-Costello O, West JB. Alveolar hypoxia increases gene expression of extracellular matrix proteins and platelet-derived growth factor-B in lung parenchyma. Am J Respir Crit Care Med 1998;158(6):1920- 1928.
  • Draz IH, Shaheen IA, Youssef EA. Platelets count and platelets indices; mean platelet volume and plateletcrit in pediatric chronic lung disease. Egypt Pediatric Association Gaz 2020;68:69.
  • Sayed SZ, Mahmoud MM, Moness HM, Mousa SO. Admission platelet count and indices as predictors of outcome in children with severe sepsis: a prospective hospital-based study. BMC Pediatr 2020;20(1):387.
  • Golwala ZM, Shah H, Gupta N, Sreenivas V, Puliyel JM. Mean platelet volume (MPV), platelet distribution width (PDW), platelet count and plateletcrit (PCT) as predictors of inhospital paediatric mortality: a case-control study. Afr Health Sci 2016;16(2):356-362.
  • Zhao G, Su Y, Sun X, Cui X, Dang L, Zhao L, Tan X, Wang H, Yang M. A comparative study of the laboratory features of COVID-19 and other viral pneumonias in the recovery stage. J Clin Lab Anal 2020;34(10):e23483.
  • Tsiara S, Elisaf M, Jagroop IA, Mikhailidis DP. Platelets as predictors of vascular risk: is there a practical index of platelet activity? Clin Appl Thromb Hemost 2003;9(3):177-190.
  • Slavka G, Perkmann T, Haslacher H, Greisenegger S, Marsik C, Wagner OF, Endler G. Mean platelet volume may represent a predictive parameter for overall vascular mortality and ischemic heart disease. Arterioscler Thromb Vasc Biol 2011;31(5):1215-1218.
  • Kodiatte TA, Manikyam UK, Rao SB, Jagadish TM, Reddy M, Lingaiah HK, Lakshmaiah V. Mean platelet volume in type 2 diabetes mellitus. J Lab Physicians 2012;4(1):5-9.
  • Przygodzki T, Luzak B, Kassassir H, Mnich E, Boncler M, Siewiera K, Kosmalski M, Szymanski J, Watala C. Diabetes and hyperglycemia affect platelet GPIIIa expression. Effects on adhesion potential of blood platelets from diabetic patients under in vitro flow conditions. Int J Mol Sci 2020;21(9):3222.
  • Kanbay A, Tutar N, Kaya E, Buyukoglan H, Ozdogan N, Oymak FS, Gulmez I, Demir R. Mean platelet volume in patients with obstructive sleep apnea syndrome and its relationship with cardiovascular diseases. Blood Coagul Fibrinolysis 2013;24(5):532-536.
  • Brito J, Siqués P, León-Velarde F, De La Cruz JJ, López V, Herruzo R. Chronic intermittent hypoxia at high altitude exposure for over 12 years: assessment of hematological, cardiovascular, and renal effects. High altitude medicine & biology 2007;8(3):236–244.
  • Zhang CY, Zhang JX, Lü XT, Li BY. Effects of intermittent hypoxic exposure on the parameter of erythrocyte and serum hypoxia inducible factor-1 alpha and erythropoietin levels. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2009;25(10):932-934.

The Effects of Therapeutic Intermittent Hypoxia Implementation on Complete Blood Count Parameters: An Experimental Animal Model

Year 2022, , 746 - 752, 28.09.2022
https://doi.org/10.33808/clinexphealthsci.1018541

Abstract

Objective: Intermittent hypoxia (IH) implementation is a method performed by intermittently decreasing oxygen concentration in inhaled air at specific rate. This method varies between studies in terms of its application. This study aims to examine the changes in Complete Blood Count (CBC) parameters caused by IH implementation at therapeutic dose ranges with a single model.
Methods: Ten Sprague Dawley type adult male rats were divided into two groups. In the study group, FiO2 level of inhaled air, was reduced to 10% in hypoxic cycle. 5 minutes normoxia-hypoxia cycle was used in each 30 minutes experiment period for study group. Control group remained in normoxic air for 30 minutes. 1 cc of blood was taken from mandibular vein from all rats at the end of 6th day. CBC analyzes were performed and differences between two groups were investigated.
Results: Significant differences were detected in some CBC parameters between the two groups. It was determined that significant increase in MONO (p<0.001), MONO% (p<0.001), MCH (p=0.03), PLT (p=0.013) and PCT (p=0.007) parameters and significant decrease in MPV (p=0.02 parameters, in favor of study group.
Conclusion: IH implementation was caused significant changes in MONO, MONO%, MCH, PCT, PLT and MPV parameters in the CBC analysis of rats. Considering the study results, therapeutic IH implementation may thought to have important effects in terms of lung protection and regeneration. Further research may focus on this point for precising and supporting of this study’ results.

References

  • Guang Y, Jie Z, Feng D, Hui L. Surrogate scale for evaluating respiratory function based on complete blood count parameters. J Clin Lab Anal 2018;32(5):e22385.
  • Xing T, Pilowsky PM. Acute intermittent hypoxia in rat in vivo elicits a robust increase in tonic sympathetic nerve activity that is independent of respiratory drive. J Physiol 2010;588(Pt 16):3075-3088.
  • Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol 2014;307(10):R1181-1197.
  • Baker TL, Mitchell GS. Episodic but not continuous hypoxia elicits long-term facilitation of phrenic motor output in rats. J Physiol 2000;529 Pt 1(Pt 1):215-219.
  • Ryan S, Nolan P. Episodic hypoxia induces long-term facilitation of upper airway muscle activity in spontaneously breathing anaesthetized rats. J Physiol 2009;587(Pt 13):3329-3342.
  • Nakamura A, Olson EB Jr, Terada J, Wenninger JM, Bisgard GE, Mitchell GS. Sleep state dependence of ventilatory long-term facilitation following acute intermittent hypoxia in Lewis rats. J Appl Physiol 2010;109(2):323-331.
  • Lovett-Barr MR, Satriotomo I, Muir GD, Wilkerson JE, Hoffman MS, Vinit S, Mitchell GS. Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury. J Neurosci 2012;32(11):3591-3600.
  • Nagel MJ, Jarrard CP, Lalande S. Effect of a single session of intermittent hypoxia on erythropoietin and oxygen-carrying capacity. Int J Environ Res Public Health 2020;17(19):7257.
  • Alvarez-Martins I, Remédio L, Matias I, Diogo LN, Monteiro EC, Dias S. The impact of chronic intermittent hypoxia on hematopoiesis and the bone marrow microenvironment. Pflugers Arch 2016;468(5):919-932.
  • Linnarsson S, Björklund A, Ernfors P. Learning deficit in BDNF mutant mice. Eur J Neurosci 1997;9(12):2581-2587.
  • Wen MH, Wu MJ, Vinit S, Lee KZ. Modulation of serotonin and adenosine 2A receptors on intermittent hypoxia-induced respiratory recovery following mid-cervical contusion in the rat. J Neurotrauma 2019;36(21):2991-3004.
  • Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, Kolbeck R, Hoppe E, Oropeza-Wekerle RL, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 1999;189(5):865-870.
  • Lommatzsch M, Niewerth A, Klotz J, Schulte-Herbrüggen O, Zingler C, Schuff-Werner P, Virchow JC. Platelet and plasma BDNF in lower respiratory tract infections of the adult. Respir Med 2007;101(7):1493-1499.
  • Yamamoto H, Gurney ME. Human platelets contain brain derived neurotrophic factor. J Neurosci 1990;10(11):3469-3478.
  • Scott MKD, Quinn K, Li Q, Carroll R, Warsinske H, Vallania F, Chen S, Carns MA, Aren K, Sun J, Koloms K, Lee J, Baral J, Kropski J, Zhao H, Herzog E, Martinez FJ, Moore BB, Hinchcliff M, Denny J, Kaminski N, Herazo-Maya JD, Shah NH, Khatri P. Increased monocyte count as a cellular biomarker for poor outcomes in fibrotic diseases: a retrospective, multicenter cohort study. Lancet Respir Med 2019;7(6):497-508.
  • Colgan SP, Furuta GT, Taylor CT. Hypoxia and innate immunity: keeping up with the HIFsters. Annu Rev Immunol 2020;38:341- 363.
  • Huang YL, Hu ZD. Lower mean corpuscular hemoglobin concentration is associated with poorer outcomes in intensive care unit admitted patients with acute myocardial infarction. Ann Transl Med 2016;4(10):190.
  • Honda H, Kimachi M, Kurita N, Joki N, Nangaku M. Low rather than high mean corpuscular volume is associated with mortality in Japanese patients under hemodialysis. Sci Rep 2020;10(1):15663.
  • McDonald TP. Platelet production in hypoxic and RBCtransfused mice. Scand J Haematol 1978;20(3):213-220.
  • Berg JT, Breen EC, Fu Z, Mathieu-Costello O, West JB. Alveolar hypoxia increases gene expression of extracellular matrix proteins and platelet-derived growth factor-B in lung parenchyma. Am J Respir Crit Care Med 1998;158(6):1920- 1928.
  • Draz IH, Shaheen IA, Youssef EA. Platelets count and platelets indices; mean platelet volume and plateletcrit in pediatric chronic lung disease. Egypt Pediatric Association Gaz 2020;68:69.
  • Sayed SZ, Mahmoud MM, Moness HM, Mousa SO. Admission platelet count and indices as predictors of outcome in children with severe sepsis: a prospective hospital-based study. BMC Pediatr 2020;20(1):387.
  • Golwala ZM, Shah H, Gupta N, Sreenivas V, Puliyel JM. Mean platelet volume (MPV), platelet distribution width (PDW), platelet count and plateletcrit (PCT) as predictors of inhospital paediatric mortality: a case-control study. Afr Health Sci 2016;16(2):356-362.
  • Zhao G, Su Y, Sun X, Cui X, Dang L, Zhao L, Tan X, Wang H, Yang M. A comparative study of the laboratory features of COVID-19 and other viral pneumonias in the recovery stage. J Clin Lab Anal 2020;34(10):e23483.
  • Tsiara S, Elisaf M, Jagroop IA, Mikhailidis DP. Platelets as predictors of vascular risk: is there a practical index of platelet activity? Clin Appl Thromb Hemost 2003;9(3):177-190.
  • Slavka G, Perkmann T, Haslacher H, Greisenegger S, Marsik C, Wagner OF, Endler G. Mean platelet volume may represent a predictive parameter for overall vascular mortality and ischemic heart disease. Arterioscler Thromb Vasc Biol 2011;31(5):1215-1218.
  • Kodiatte TA, Manikyam UK, Rao SB, Jagadish TM, Reddy M, Lingaiah HK, Lakshmaiah V. Mean platelet volume in type 2 diabetes mellitus. J Lab Physicians 2012;4(1):5-9.
  • Przygodzki T, Luzak B, Kassassir H, Mnich E, Boncler M, Siewiera K, Kosmalski M, Szymanski J, Watala C. Diabetes and hyperglycemia affect platelet GPIIIa expression. Effects on adhesion potential of blood platelets from diabetic patients under in vitro flow conditions. Int J Mol Sci 2020;21(9):3222.
  • Kanbay A, Tutar N, Kaya E, Buyukoglan H, Ozdogan N, Oymak FS, Gulmez I, Demir R. Mean platelet volume in patients with obstructive sleep apnea syndrome and its relationship with cardiovascular diseases. Blood Coagul Fibrinolysis 2013;24(5):532-536.
  • Brito J, Siqués P, León-Velarde F, De La Cruz JJ, López V, Herruzo R. Chronic intermittent hypoxia at high altitude exposure for over 12 years: assessment of hematological, cardiovascular, and renal effects. High altitude medicine & biology 2007;8(3):236–244.
  • Zhang CY, Zhang JX, Lü XT, Li BY. Effects of intermittent hypoxic exposure on the parameter of erythrocyte and serum hypoxia inducible factor-1 alpha and erythropoietin levels. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2009;25(10):932-934.
There are 31 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Talha Kılıç 0000-0001-6309-7864

Mustafa Sengor 0000-0002-2447-7538

Savaş Üstünova 0000-0003-1870-229X

Aysu Kılıc 0000-0002-8593-1415

Hayrettin Daşkaya 0000-0002-0155-1387

Aysel Yıldız Özer 0000-0003-0739-6143

Publication Date September 28, 2022
Submission Date November 4, 2021
Published in Issue Year 2022

Cite

APA Kılıç, T., Sengor, M., Üstünova, S., Kılıc, A., et al. (2022). The Effects of Therapeutic Intermittent Hypoxia Implementation on Complete Blood Count Parameters: An Experimental Animal Model. Clinical and Experimental Health Sciences, 12(3), 746-752. https://doi.org/10.33808/clinexphealthsci.1018541
AMA Kılıç T, Sengor M, Üstünova S, Kılıc A, Daşkaya H, Özer AY. The Effects of Therapeutic Intermittent Hypoxia Implementation on Complete Blood Count Parameters: An Experimental Animal Model. Clinical and Experimental Health Sciences. September 2022;12(3):746-752. doi:10.33808/clinexphealthsci.1018541
Chicago Kılıç, Talha, Mustafa Sengor, Savaş Üstünova, Aysu Kılıc, Hayrettin Daşkaya, and Aysel Yıldız Özer. “The Effects of Therapeutic Intermittent Hypoxia Implementation on Complete Blood Count Parameters: An Experimental Animal Model”. Clinical and Experimental Health Sciences 12, no. 3 (September 2022): 746-52. https://doi.org/10.33808/clinexphealthsci.1018541.
EndNote Kılıç T, Sengor M, Üstünova S, Kılıc A, Daşkaya H, Özer AY (September 1, 2022) The Effects of Therapeutic Intermittent Hypoxia Implementation on Complete Blood Count Parameters: An Experimental Animal Model. Clinical and Experimental Health Sciences 12 3 746–752.
IEEE T. Kılıç, M. Sengor, S. Üstünova, A. Kılıc, H. Daşkaya, and A. Y. Özer, “The Effects of Therapeutic Intermittent Hypoxia Implementation on Complete Blood Count Parameters: An Experimental Animal Model”, Clinical and Experimental Health Sciences, vol. 12, no. 3, pp. 746–752, 2022, doi: 10.33808/clinexphealthsci.1018541.
ISNAD Kılıç, Talha et al. “The Effects of Therapeutic Intermittent Hypoxia Implementation on Complete Blood Count Parameters: An Experimental Animal Model”. Clinical and Experimental Health Sciences 12/3 (September 2022), 746-752. https://doi.org/10.33808/clinexphealthsci.1018541.
JAMA Kılıç T, Sengor M, Üstünova S, Kılıc A, Daşkaya H, Özer AY. The Effects of Therapeutic Intermittent Hypoxia Implementation on Complete Blood Count Parameters: An Experimental Animal Model. Clinical and Experimental Health Sciences. 2022;12:746–752.
MLA Kılıç, Talha et al. “The Effects of Therapeutic Intermittent Hypoxia Implementation on Complete Blood Count Parameters: An Experimental Animal Model”. Clinical and Experimental Health Sciences, vol. 12, no. 3, 2022, pp. 746-52, doi:10.33808/clinexphealthsci.1018541.
Vancouver Kılıç T, Sengor M, Üstünova S, Kılıc A, Daşkaya H, Özer AY. The Effects of Therapeutic Intermittent Hypoxia Implementation on Complete Blood Count Parameters: An Experimental Animal Model. Clinical and Experimental Health Sciences. 2022;12(3):746-52.

14639   14640