Research Article
BibTex RIS Cite
Year 2023, , 753 - 759, 29.12.2023
https://doi.org/10.33808/clinexphealthsci.1130449

Abstract

References

  • Pak JH, Kim Y, Yi J, Chung JW. Antioxidant therapy against oxidative damage of the inner ear: Protection and preconditioning. Antioxidants 2020; 9(11):2-21. DOI: 10.3390/antiox9111076
  • Dong Y, Ding D, Jiang H, Shi J-r, Salvi R, Roth JA. Ototoxicity of paclitaxel in rat cochlear organotypic cultures. Toxicol Appl Pharmacol. 2014; 280(3):526-533. DOI: 10.1016/j.taap.2014.08.022
  • Atalay F, Tatar A, Dincer B, Gündoğdu B, Köyceğiz S. Protective effect of carvacrol against paclitaxel-induced ototoxicity in rat model. Turk Arch Otorhinolaryngol 2020; 58(4):241-248. DOI: 10.5152/tao.2020.5714
  • Yan-Hua Y, Jia-Wang M, Xiao-Li T. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin J Nat Med. 2020; 18(12):890-897. DOI: 10.1016/S1875-5364(20)60032-2
  • Alqahtani FY, Aleanizy FS, El Tahir E, Alkahtani HM, AlQuadeib BT, Paclitaxel, in Profiles of drug substances, excipients and related methodology. 2019, Elsevier. p. 205-238. DOI: 10.1016/bs.podrm.2018.11.001
  • Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H. Paclitaxel: A review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf. 2007; 6(5):609-621. DOI: 10.1517/14740338.6.5.609
  • Bucak A, Ozdemir C, Ulu S, Gonul Y, Aycicek A, Uysal M, Cangal A. Investigation of protective role of curcumin against paclitaxel‐induced inner ear damage in rats. The Laryngoscope 2015; 125(5):1175-1182. DOI: 10.1002/lary.25031
  • Park SB, Lin CSY, Krishnan AV, Friedlander ML, Lewis CR, Kiernan MC. Early, progressive, and sustained dysfunction of sensory axons underlies paclitaxel‐induced neuropathy. Muscle & Nerve 2011; 43(3): 367-374. DOI: 10.1002/mus.21874
  • Cheung, S, Henderson-Sabes J, Mastick J, Abrams G, Snowberg K, Alfaro E, Quinn M, Paul S, Cooper B, Wallhagen M, Conley Y, Levine J, Miaskowski C. Cancer survivors and neurotoxic chemotherapy: hearing loss and tinnitus. BMJ Support. Palliat. 2022; bmjspcare-2022-003684. DOI: 10.1136/spcare-2022-003684
  • Kilic K, Sakat MS, Akdemir FNE, Yildirim S, Saglam YS, Askin S. Protective effect of gallic acid against cisplatin-induced ototoxicity in rats. Braz. J. Otorhinolaryngol 2019;85(3):267-274. DOI: 10.1016/j.bjorl.2018.03.001
  • Sakat MS, Kilic K, Akdemir FNE, Yildirim S, Eser G, Kiziltunc A. The effectiveness of eugenol against cisplatin-induced ototoxicity. Braz. J. Otorhinolaryngol 2019;85(6):766-773. DOI: 10.1016/j.bjorl.2018.07.007
  • Im GJ, Chang J, Lee S, Choi J, Jung HH, Lee HM, Ryu SH, Park SK, Kim JH, Kim H-J. Protective role of edaravone against cisplatin-induced ototoxicity in an auditory cell line. Hear Res. 2015; 330:113-118. DOI: 10.1016/j.heares.2015.08.004
  • Özdemir D, Özgür A, Kalkan Y, Terzi S, Tümkaya L, Yılmaz A, Çeliker M, Dursun E. The protective effects of whortleberry extract against cisplatin-induced ototoxicity in rats. Braz. J. Otorhinolaryngol 2019; 85(1):55-62. DOI: 10.1016/j.bjorl.2017.10.009
  • Bouyahya A, Mechchate H, Benali T, Ghchime R, Charfi S, Balahbib A, Burkov P, Shariati MA, Lorenzo JM, Omari NE. Health benefits and pharmacological properties of carvone. Biomolecules 2021; 11(12):1-26. DOI: 10.3390/biom11121803
  • Dai M, Wu L, Yu K, Xu R, Wei Y, Chinnathambi A, Alahmadi TA, Zhou M. D-Carvone inhibit cerebral ischemia/reperfusion induced inflammatory response TLR4/NLRP3 signaling pathway. Biomed Pharmacother. 2020; 132:110870. DOI: 10.1016/j.biopha.2020.110870
  • Asle-Rousta M, Amini R, Aghazadeh S. Carvone suppresses oxidative stress and inflammation in the liver of immobilised rats. Arch Physiol Biochem. 2023; 129(3):597-602. DOI: 10.1080/13813455.2020.1851726
  • Vinothkumar R, Sudha M, Viswanathan P, Kabalimoorthy J, Balasubramanian T, Nalini N. Modulating effect of d‐carvone on 1, 2‐dimethylhydrazine‐induced pre‐neoplastic lesions, oxidative stress and biotransforming enzymes, in an experimental model of rat colon carcinogenesis. Cell Prolif. 2013; 46(6):705-720. DOI: 10.1111/cpr.12062
  • Muruganathan U, Srinivasan S, Indumathi D. Antihyperglycemic effect of carvone: Effect on the levels of glycoprotein components in streptozotocin-induced diabetic rats. J Acute Dis. 2013; 2(4):310-315. DOI: 10.1016/S2221-6189(13)60150-X
  • Muruganathan U, Srinivasan S. Beneficial effect of carvone, a dietary monoterpene ameliorates hyperglycemia by regulating the key enzymes activities of carbohydrate metabolism in streptozotocin-induced diabetic rats. Biomed Pharmacother. 2016; 84: 1558-1567. DOI: 10.1016/j.biopha.2016.11.025
  • Bekmez Bilmez ZE, Aydin S, Şanli A, Altintoprak N, Demir MG, Atalay Erdoğan B, Kösemihal E. Oxytocin as a protective agent in cisplatin-induced ototoxicity. Cancer Chemother Pharmacol. 2016; 77(4):875-879. DOI: 10.1007/s00280-016-2978-x
  • Cadirci E, Ugan RA, Dincer B, Gundogdu B, Cinar I, Akpinar E, Halici Z. Urotensin receptors as a new target for CLP induced septic lung injury in mice. Naunyn Schmiedebergs Arch Pharmacol. 2019; 392(2):135-145. DOI: 10.1007/s00210-018-1571-8
  • Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968; 25:192-205. DOI: 10.1016/0003-2697(68)90092-4
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95(2):351-358. DOI: 10.1016/0003-2697(79)90738-3
  • Kökten N, Eğilmez OK, Erinç M, Ekici AID, Şerifler S, Yeşilada E, Kalcıoğlu MT. The protective effect of nigella sativa oil against experimentally induced cisplatin ototoxicity: An animal study. J Int Adv Otol. 2020; 16(3):346-352. DOI: 10.5152/iao.2020.7761
  • Salehi P, Akinpelu OV, Waissbluth S, Peleva E, Meehan B, Rak J, Daniel SJ. Attenuation of cisplatin ototoxicity by otoprotective effects of nanoencapsulated curcumin and dexamethasone in a guinea pig model. Otol Neurotol. 2014; 35(7):1131-1139. DOI: 10.1097/MAO.0000000000000403
  • Avci D, Erkan M, Sönmez MF, Kökoglu K, Günes MS, Gündogdu R, Güleç S, Karabulut D. A prospective experimental study on the protective effect of resveratrol against amikacin-induced ototoxicity in rats. J Int Adv Otol. 2016; 12(3):290-297. DOI: 10.5152/iao.2016.2617
  • Sergi B, Fetoni A, Ferraresi A, Troiani D, Azzena G, Paludetti G, Maurizi M. The role of antioxidants in protection from ototoxic drugs. Acta Otolaryngol. (Stockh.) 2004; 124(sup552):42-45. DOI: 10.1080/03655230410017111
  • Fetoni A, Sergi B, Ferraresi A, Paludetti G, Troiani D. Protective effects of α-tocopherol and tiopronin against cisplatin-induced ototoxicity. Acta Otolaryngol. (Stockh.) 2004; 124(4):421-426. DOI: 10.1080/00016480410016559
  • Sabir S, Singh D, Rocha J. In Vitro antioxidant activity of S-carvone isolated from Zanthoxylum alatum. Pharm Chem J. 2015; 49(3):187-191. DOI: 10.1007/s11094-015-1251-7
  • Ding X, Chen H. Anticancer effects of Carvone in myeloma cells is mediated through the inhibition of p38 MAPK signalling pathway, apoptosis induction and inhibition of cell invasion. J BUON 2018; 23(3):747-751.
  • Patel PB, Thakkar VR. L-carvone induces p53, caspase 3 mediated apoptosis and inhibits the migration of breast cancer cell lines. Nutr Cancer 2014; 66(3):453-462. DOI:10.1080/01635581.2014.884230
  • Cinici E, Dilekmen N, Kutlu Z, Dincer B, Cinici O, Balta H, Calık I. Carvone protects against paclitaxel-induced retinal and optic nerve cytotoxicity: a histopathological study. Cutan Ocul Toxicol. 2019; 38(3):290-293. DOI: 10.1080/15569527.2019.1608229
  • Sarafraz M, Ahmadi K. Paraclinical evaluation of side-effects of Taxanes on auditory system. Acta Otorhinolaryngol Ital. 2008; 28(5):239-242.
  • Ridwelski K, Gebauer T, Fahlke J, Kröning H, Kettner E, Meyer F, Eichelmann K, Lippert H. Combination chemotherapy with docetaxel and cisplatin for locally advanced and metastatic gastric cancer. Ann Oncol. 2001; 12(1):47-51. DOI: 10.1023/a:1008328501128
  • Georgoulias V, Ardavanis A, Tsiafaki X, Agelidou A, Mixalopoulou P, Anagnostopoulou O, Ziotopoulos P, Toubis M, Syrigos K, Samaras N. Vinorelbine plus cisplatin versus docetaxel plus gemcitabine in advanced non-small-cell lung cancer: A phase III randomized trial. J Clin Oncol. 2005; 23(13):2937-2945. DOI: 10.1200/JCO.2005.04.016
  • Ding D, He J, Allman BL, Yu D, Jiang H, Seigel GM, Salvi RJ. Cisplatin ototoxicity in rat cochlear organotypic cultures. Hear Res. 2011; 282(1-2):196-203. DOI: 10.1016/j.heares.2011.08.002
  • Jamesdaniel S, Coling D, Hinduja S, Ding D, Li J, Cassidy L, Seigel GM, Qu J, Salvi R. Cisplatin-induced ototoxicity is mediated by nitroxidative modification of cochlear proteins characterized by nitration of Lmo4. J Biol Chem. 2012; 287(22):18674-18686. DOI: 10.1074/jbc.M111.297960
  • Atas A, Agca O, Sarac S, Poyraz A, Akyol MU. Investigation of ototoxic effects of Taxol on a mice model. Int. J. Pediatr. Otorhinolaryngol. 2006; 70(5):779-784. DOI: 10.1016/j.ijporl.2005.11.011
  • Pace A, Nisticò C, Cuppone F, Bria E, Galiè E, Graziano G, Natoli G, Sperduti I, Jandolo B, Calabretta F. Peripheral neurotoxicity of weekly paclitaxel chemotherapy: A schedule or a dose issue? Clin. Breast Cancer 2007; 7(7):550-554. DOI: 10.3816/CBC.2007.n.010
  • Hu L-Y, Mi W-L, Wu G-C, Wang Y-Q, Mao-Ying Q-L. Prevention and treatment for chemotherapy-induced peripheral neuropathy: therapies based on CIPN mechanisms. Curr. Neuropharmacol. 2019; 17(2):184-196. DOI: 10.2174/1570159X15666170915143217
  • Cavaletti G, Cavalletti E, Oggioni N, Sottani C, Minoia C, D’incalci M, Zucchetti M, Marmiroli P, Tredici G. Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration. Neurotoxicology 2000; 21(3):389-393.
  • Hallworth R, Ludueña RF. Differential expression of β tubulin isotypes in the adult gerbil cochlea. Hear Res. 2000; 148(1-2):161-172. DOI: 10.1016/s0378-5955(00)00149-0
  • Jensen-Smith HC, Eley J, Steyger PS, Ludueña RF, Hallworth R. Cell type-specific reduction of β tubulin isotypes synthesized in the developing gerbil organ of Corti. J Neurocytol. 2003; 32(2):185-197. DOI: 10.1023/b:neur.0000005602.18713.02
  • Barrera G, Pizzimenti S, Daga M, Dianzani C, Arcaro A, Cetrangolo GP, Gentile F. Lipid peroxidation-derived aldehydes, 4-hydroxynonenal and malondialdehyde in aging-related disorders. Antioxidants 2018; 7(8): 102. DOI: 10.3390/antiox7080102
  • Papac-Milicevic N, Busch CL, Binder CJ. Malondialdehyde epitopes as targets of immunity and the implications for atherosclerosis. Adv Immunol. 2016; 131: 1-59. DOI: 10.1016/bs.ai.2016.02.001
  • Zhao M, Du J. Anti-inflammatory and protective effects of D-carvone on lipopolysaccharide (LPS)-induced acute lung injury in mice. J King Saud Univ Sci. 2020; 32(2):1592-1596. DOI: 10.1016/j.jksus.2019.12.016
  • Abdala C, Visser-Dumont L. Distortion product otoacoustic emissions: A tool for hearing assessment and scientific study. The Volta Review 2001; 103(4):281-302.

Otoprotective Mechanisms of Carvone As An Antioxidant Agent Against Ototoxic Damage Caused By Paclitaxel

Year 2023, , 753 - 759, 29.12.2023
https://doi.org/10.33808/clinexphealthsci.1130449

Abstract

Objective: Ototoxicity is cellular damage caused by the use of solid treatments as chemotherapeutics in critical illnesses like cancer. The generation of free radicals is linked to fluctuating hearing loss caused by chemotherapeutics. Antioxidants can help to prevent ototoxicity-related oxidative damage. Carvone (CVN) is a monoterpene with excellent antioxidant properties that protect against oxidative damage. This study investigates the biochemical and functional aspects of CVN’s putative otoprotective mechanisms against paclitaxel (PCX)-induced ototoxicity.
Methods: 24 Wistar albino rats were assigned into four different groups: Control, CVN, PCX, and PCX+CVN. Once a week, the control group received saline. The PCX group received 5 mg/kg PCX intraperitoneally once a week (4 times). Once a week, the CVN group received 50 mg/kg intraperitoneally. The PCX+ CVN group received 5 mg/kg PCX followed by 5 mg/kg CVN once a week. All animals were subjected to deterioration product otoacoustic emission testing before (day 0) and after drug administration (day 23).
Results: PCX showed an ototoxic effect by weakening otoacoustic emission values. PCX leads to significant otoacoustic emission value shifts ameliorated by CVN co-treatment (for 2000Hz p< .001, for 4000 levels p< .01, for 6000Hz p< .001, and for 8000 Hz p< .01 in PCX+CVN group). Furthermore, the PCX group had significantly greater malondialdehyde levels and significantly lower glutathione levels in the cochlear tissues, compared to the other groups. Co-administered CVN with PCX reversed these effects, making oxidative stress parameters close to those of the control group (for GSH levels p< .001, for MDA levels p< .01 in the PCX+CVN group).
Conclusion: According to the findings, CVN appears to preserve cochlear function in rats against the disruptive effects of PCX.

References

  • Pak JH, Kim Y, Yi J, Chung JW. Antioxidant therapy against oxidative damage of the inner ear: Protection and preconditioning. Antioxidants 2020; 9(11):2-21. DOI: 10.3390/antiox9111076
  • Dong Y, Ding D, Jiang H, Shi J-r, Salvi R, Roth JA. Ototoxicity of paclitaxel in rat cochlear organotypic cultures. Toxicol Appl Pharmacol. 2014; 280(3):526-533. DOI: 10.1016/j.taap.2014.08.022
  • Atalay F, Tatar A, Dincer B, Gündoğdu B, Köyceğiz S. Protective effect of carvacrol against paclitaxel-induced ototoxicity in rat model. Turk Arch Otorhinolaryngol 2020; 58(4):241-248. DOI: 10.5152/tao.2020.5714
  • Yan-Hua Y, Jia-Wang M, Xiao-Li T. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin J Nat Med. 2020; 18(12):890-897. DOI: 10.1016/S1875-5364(20)60032-2
  • Alqahtani FY, Aleanizy FS, El Tahir E, Alkahtani HM, AlQuadeib BT, Paclitaxel, in Profiles of drug substances, excipients and related methodology. 2019, Elsevier. p. 205-238. DOI: 10.1016/bs.podrm.2018.11.001
  • Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H. Paclitaxel: A review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf. 2007; 6(5):609-621. DOI: 10.1517/14740338.6.5.609
  • Bucak A, Ozdemir C, Ulu S, Gonul Y, Aycicek A, Uysal M, Cangal A. Investigation of protective role of curcumin against paclitaxel‐induced inner ear damage in rats. The Laryngoscope 2015; 125(5):1175-1182. DOI: 10.1002/lary.25031
  • Park SB, Lin CSY, Krishnan AV, Friedlander ML, Lewis CR, Kiernan MC. Early, progressive, and sustained dysfunction of sensory axons underlies paclitaxel‐induced neuropathy. Muscle & Nerve 2011; 43(3): 367-374. DOI: 10.1002/mus.21874
  • Cheung, S, Henderson-Sabes J, Mastick J, Abrams G, Snowberg K, Alfaro E, Quinn M, Paul S, Cooper B, Wallhagen M, Conley Y, Levine J, Miaskowski C. Cancer survivors and neurotoxic chemotherapy: hearing loss and tinnitus. BMJ Support. Palliat. 2022; bmjspcare-2022-003684. DOI: 10.1136/spcare-2022-003684
  • Kilic K, Sakat MS, Akdemir FNE, Yildirim S, Saglam YS, Askin S. Protective effect of gallic acid against cisplatin-induced ototoxicity in rats. Braz. J. Otorhinolaryngol 2019;85(3):267-274. DOI: 10.1016/j.bjorl.2018.03.001
  • Sakat MS, Kilic K, Akdemir FNE, Yildirim S, Eser G, Kiziltunc A. The effectiveness of eugenol against cisplatin-induced ototoxicity. Braz. J. Otorhinolaryngol 2019;85(6):766-773. DOI: 10.1016/j.bjorl.2018.07.007
  • Im GJ, Chang J, Lee S, Choi J, Jung HH, Lee HM, Ryu SH, Park SK, Kim JH, Kim H-J. Protective role of edaravone against cisplatin-induced ototoxicity in an auditory cell line. Hear Res. 2015; 330:113-118. DOI: 10.1016/j.heares.2015.08.004
  • Özdemir D, Özgür A, Kalkan Y, Terzi S, Tümkaya L, Yılmaz A, Çeliker M, Dursun E. The protective effects of whortleberry extract against cisplatin-induced ototoxicity in rats. Braz. J. Otorhinolaryngol 2019; 85(1):55-62. DOI: 10.1016/j.bjorl.2017.10.009
  • Bouyahya A, Mechchate H, Benali T, Ghchime R, Charfi S, Balahbib A, Burkov P, Shariati MA, Lorenzo JM, Omari NE. Health benefits and pharmacological properties of carvone. Biomolecules 2021; 11(12):1-26. DOI: 10.3390/biom11121803
  • Dai M, Wu L, Yu K, Xu R, Wei Y, Chinnathambi A, Alahmadi TA, Zhou M. D-Carvone inhibit cerebral ischemia/reperfusion induced inflammatory response TLR4/NLRP3 signaling pathway. Biomed Pharmacother. 2020; 132:110870. DOI: 10.1016/j.biopha.2020.110870
  • Asle-Rousta M, Amini R, Aghazadeh S. Carvone suppresses oxidative stress and inflammation in the liver of immobilised rats. Arch Physiol Biochem. 2023; 129(3):597-602. DOI: 10.1080/13813455.2020.1851726
  • Vinothkumar R, Sudha M, Viswanathan P, Kabalimoorthy J, Balasubramanian T, Nalini N. Modulating effect of d‐carvone on 1, 2‐dimethylhydrazine‐induced pre‐neoplastic lesions, oxidative stress and biotransforming enzymes, in an experimental model of rat colon carcinogenesis. Cell Prolif. 2013; 46(6):705-720. DOI: 10.1111/cpr.12062
  • Muruganathan U, Srinivasan S, Indumathi D. Antihyperglycemic effect of carvone: Effect on the levels of glycoprotein components in streptozotocin-induced diabetic rats. J Acute Dis. 2013; 2(4):310-315. DOI: 10.1016/S2221-6189(13)60150-X
  • Muruganathan U, Srinivasan S. Beneficial effect of carvone, a dietary monoterpene ameliorates hyperglycemia by regulating the key enzymes activities of carbohydrate metabolism in streptozotocin-induced diabetic rats. Biomed Pharmacother. 2016; 84: 1558-1567. DOI: 10.1016/j.biopha.2016.11.025
  • Bekmez Bilmez ZE, Aydin S, Şanli A, Altintoprak N, Demir MG, Atalay Erdoğan B, Kösemihal E. Oxytocin as a protective agent in cisplatin-induced ototoxicity. Cancer Chemother Pharmacol. 2016; 77(4):875-879. DOI: 10.1007/s00280-016-2978-x
  • Cadirci E, Ugan RA, Dincer B, Gundogdu B, Cinar I, Akpinar E, Halici Z. Urotensin receptors as a new target for CLP induced septic lung injury in mice. Naunyn Schmiedebergs Arch Pharmacol. 2019; 392(2):135-145. DOI: 10.1007/s00210-018-1571-8
  • Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968; 25:192-205. DOI: 10.1016/0003-2697(68)90092-4
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95(2):351-358. DOI: 10.1016/0003-2697(79)90738-3
  • Kökten N, Eğilmez OK, Erinç M, Ekici AID, Şerifler S, Yeşilada E, Kalcıoğlu MT. The protective effect of nigella sativa oil against experimentally induced cisplatin ototoxicity: An animal study. J Int Adv Otol. 2020; 16(3):346-352. DOI: 10.5152/iao.2020.7761
  • Salehi P, Akinpelu OV, Waissbluth S, Peleva E, Meehan B, Rak J, Daniel SJ. Attenuation of cisplatin ototoxicity by otoprotective effects of nanoencapsulated curcumin and dexamethasone in a guinea pig model. Otol Neurotol. 2014; 35(7):1131-1139. DOI: 10.1097/MAO.0000000000000403
  • Avci D, Erkan M, Sönmez MF, Kökoglu K, Günes MS, Gündogdu R, Güleç S, Karabulut D. A prospective experimental study on the protective effect of resveratrol against amikacin-induced ototoxicity in rats. J Int Adv Otol. 2016; 12(3):290-297. DOI: 10.5152/iao.2016.2617
  • Sergi B, Fetoni A, Ferraresi A, Troiani D, Azzena G, Paludetti G, Maurizi M. The role of antioxidants in protection from ototoxic drugs. Acta Otolaryngol. (Stockh.) 2004; 124(sup552):42-45. DOI: 10.1080/03655230410017111
  • Fetoni A, Sergi B, Ferraresi A, Paludetti G, Troiani D. Protective effects of α-tocopherol and tiopronin against cisplatin-induced ototoxicity. Acta Otolaryngol. (Stockh.) 2004; 124(4):421-426. DOI: 10.1080/00016480410016559
  • Sabir S, Singh D, Rocha J. In Vitro antioxidant activity of S-carvone isolated from Zanthoxylum alatum. Pharm Chem J. 2015; 49(3):187-191. DOI: 10.1007/s11094-015-1251-7
  • Ding X, Chen H. Anticancer effects of Carvone in myeloma cells is mediated through the inhibition of p38 MAPK signalling pathway, apoptosis induction and inhibition of cell invasion. J BUON 2018; 23(3):747-751.
  • Patel PB, Thakkar VR. L-carvone induces p53, caspase 3 mediated apoptosis and inhibits the migration of breast cancer cell lines. Nutr Cancer 2014; 66(3):453-462. DOI:10.1080/01635581.2014.884230
  • Cinici E, Dilekmen N, Kutlu Z, Dincer B, Cinici O, Balta H, Calık I. Carvone protects against paclitaxel-induced retinal and optic nerve cytotoxicity: a histopathological study. Cutan Ocul Toxicol. 2019; 38(3):290-293. DOI: 10.1080/15569527.2019.1608229
  • Sarafraz M, Ahmadi K. Paraclinical evaluation of side-effects of Taxanes on auditory system. Acta Otorhinolaryngol Ital. 2008; 28(5):239-242.
  • Ridwelski K, Gebauer T, Fahlke J, Kröning H, Kettner E, Meyer F, Eichelmann K, Lippert H. Combination chemotherapy with docetaxel and cisplatin for locally advanced and metastatic gastric cancer. Ann Oncol. 2001; 12(1):47-51. DOI: 10.1023/a:1008328501128
  • Georgoulias V, Ardavanis A, Tsiafaki X, Agelidou A, Mixalopoulou P, Anagnostopoulou O, Ziotopoulos P, Toubis M, Syrigos K, Samaras N. Vinorelbine plus cisplatin versus docetaxel plus gemcitabine in advanced non-small-cell lung cancer: A phase III randomized trial. J Clin Oncol. 2005; 23(13):2937-2945. DOI: 10.1200/JCO.2005.04.016
  • Ding D, He J, Allman BL, Yu D, Jiang H, Seigel GM, Salvi RJ. Cisplatin ototoxicity in rat cochlear organotypic cultures. Hear Res. 2011; 282(1-2):196-203. DOI: 10.1016/j.heares.2011.08.002
  • Jamesdaniel S, Coling D, Hinduja S, Ding D, Li J, Cassidy L, Seigel GM, Qu J, Salvi R. Cisplatin-induced ototoxicity is mediated by nitroxidative modification of cochlear proteins characterized by nitration of Lmo4. J Biol Chem. 2012; 287(22):18674-18686. DOI: 10.1074/jbc.M111.297960
  • Atas A, Agca O, Sarac S, Poyraz A, Akyol MU. Investigation of ototoxic effects of Taxol on a mice model. Int. J. Pediatr. Otorhinolaryngol. 2006; 70(5):779-784. DOI: 10.1016/j.ijporl.2005.11.011
  • Pace A, Nisticò C, Cuppone F, Bria E, Galiè E, Graziano G, Natoli G, Sperduti I, Jandolo B, Calabretta F. Peripheral neurotoxicity of weekly paclitaxel chemotherapy: A schedule or a dose issue? Clin. Breast Cancer 2007; 7(7):550-554. DOI: 10.3816/CBC.2007.n.010
  • Hu L-Y, Mi W-L, Wu G-C, Wang Y-Q, Mao-Ying Q-L. Prevention and treatment for chemotherapy-induced peripheral neuropathy: therapies based on CIPN mechanisms. Curr. Neuropharmacol. 2019; 17(2):184-196. DOI: 10.2174/1570159X15666170915143217
  • Cavaletti G, Cavalletti E, Oggioni N, Sottani C, Minoia C, D’incalci M, Zucchetti M, Marmiroli P, Tredici G. Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration. Neurotoxicology 2000; 21(3):389-393.
  • Hallworth R, Ludueña RF. Differential expression of β tubulin isotypes in the adult gerbil cochlea. Hear Res. 2000; 148(1-2):161-172. DOI: 10.1016/s0378-5955(00)00149-0
  • Jensen-Smith HC, Eley J, Steyger PS, Ludueña RF, Hallworth R. Cell type-specific reduction of β tubulin isotypes synthesized in the developing gerbil organ of Corti. J Neurocytol. 2003; 32(2):185-197. DOI: 10.1023/b:neur.0000005602.18713.02
  • Barrera G, Pizzimenti S, Daga M, Dianzani C, Arcaro A, Cetrangolo GP, Gentile F. Lipid peroxidation-derived aldehydes, 4-hydroxynonenal and malondialdehyde in aging-related disorders. Antioxidants 2018; 7(8): 102. DOI: 10.3390/antiox7080102
  • Papac-Milicevic N, Busch CL, Binder CJ. Malondialdehyde epitopes as targets of immunity and the implications for atherosclerosis. Adv Immunol. 2016; 131: 1-59. DOI: 10.1016/bs.ai.2016.02.001
  • Zhao M, Du J. Anti-inflammatory and protective effects of D-carvone on lipopolysaccharide (LPS)-induced acute lung injury in mice. J King Saud Univ Sci. 2020; 32(2):1592-1596. DOI: 10.1016/j.jksus.2019.12.016
  • Abdala C, Visser-Dumont L. Distortion product otoacoustic emissions: A tool for hearing assessment and scientific study. The Volta Review 2001; 103(4):281-302.
There are 47 citations in total.

Details

Primary Language English
Subjects Basic Pharmacology
Journal Section Articles
Authors

Büşra Dincer 0000-0002-3365-7741

Fatma Atalay 0000-0002-0344-1982

Arzu Tatar 0000-0002-4486-2695

Publication Date December 29, 2023
Submission Date June 14, 2022
Published in Issue Year 2023

Cite

APA Dincer, B., Atalay, F., & Tatar, A. (2023). Otoprotective Mechanisms of Carvone As An Antioxidant Agent Against Ototoxic Damage Caused By Paclitaxel. Clinical and Experimental Health Sciences, 13(4), 753-759. https://doi.org/10.33808/clinexphealthsci.1130449
AMA Dincer B, Atalay F, Tatar A. Otoprotective Mechanisms of Carvone As An Antioxidant Agent Against Ototoxic Damage Caused By Paclitaxel. Clinical and Experimental Health Sciences. December 2023;13(4):753-759. doi:10.33808/clinexphealthsci.1130449
Chicago Dincer, Büşra, Fatma Atalay, and Arzu Tatar. “Otoprotective Mechanisms of Carvone As An Antioxidant Agent Against Ototoxic Damage Caused By Paclitaxel”. Clinical and Experimental Health Sciences 13, no. 4 (December 2023): 753-59. https://doi.org/10.33808/clinexphealthsci.1130449.
EndNote Dincer B, Atalay F, Tatar A (December 1, 2023) Otoprotective Mechanisms of Carvone As An Antioxidant Agent Against Ototoxic Damage Caused By Paclitaxel. Clinical and Experimental Health Sciences 13 4 753–759.
IEEE B. Dincer, F. Atalay, and A. Tatar, “Otoprotective Mechanisms of Carvone As An Antioxidant Agent Against Ototoxic Damage Caused By Paclitaxel”, Clinical and Experimental Health Sciences, vol. 13, no. 4, pp. 753–759, 2023, doi: 10.33808/clinexphealthsci.1130449.
ISNAD Dincer, Büşra et al. “Otoprotective Mechanisms of Carvone As An Antioxidant Agent Against Ototoxic Damage Caused By Paclitaxel”. Clinical and Experimental Health Sciences 13/4 (December 2023), 753-759. https://doi.org/10.33808/clinexphealthsci.1130449.
JAMA Dincer B, Atalay F, Tatar A. Otoprotective Mechanisms of Carvone As An Antioxidant Agent Against Ototoxic Damage Caused By Paclitaxel. Clinical and Experimental Health Sciences. 2023;13:753–759.
MLA Dincer, Büşra et al. “Otoprotective Mechanisms of Carvone As An Antioxidant Agent Against Ototoxic Damage Caused By Paclitaxel”. Clinical and Experimental Health Sciences, vol. 13, no. 4, 2023, pp. 753-9, doi:10.33808/clinexphealthsci.1130449.
Vancouver Dincer B, Atalay F, Tatar A. Otoprotective Mechanisms of Carvone As An Antioxidant Agent Against Ototoxic Damage Caused By Paclitaxel. Clinical and Experimental Health Sciences. 2023;13(4):753-9.

14639   14640