Research Article
BibTex RIS Cite

Surface Plasmon Resonance Binding Study on the Interaction of Acetazolamide and Bovine Serum Albumin

Year 2023, , 703 - 709, 29.12.2023
https://doi.org/10.33808/clinexphealthsci.1218956

Abstract

Objective: Serum albumins are major plasma proteins in systemic blood circulation and act as transport proteins for endogenous and exogenous compounds such as drugs. In pharmaceutical applications, it is essential to characterize how drugs bind to serum albumin in the evaluation of drug candidates. Surface plasmon resonance (SPR) is fast, real-time, label-free optical based detection technique that offers the monitoring of molecular interactions, analyzing binding reactions and determining the affinity constants with real-time and high sensitivity. Acetazolamide (AZA) is used in the treatment of epilepsy and glaucoma.
Methods: To determine the binding kinetics of AZA-Bovine serum albumin (BSA) interaction, (i) SPR gold sensor surface was functionalized, (ii) amine coupling procedure was applied to activate the surface group and BSA was immobilized on functionalized sensor surface, (iii) the concentration series of AZA (10, 25, 50, 75, 100, 150, 200 and 250 µM) was injected to SPR system and (iv) kinetic values were measured using the software of SPR system.
Results: 5 mM MUA was coated for surface functionalization. 250 µg/mL BSA as ligand, 30 µL/min flow rate, 1X PBS buffer (pH 7.4) and 10 mM acetate buffer (pH 5.2) as running and coupling buffers, respectively, were performed for SPR binding study. According to result, equilibrium constant (KD) of AZA-BSA was determined as 67.72 µM.
Conclusion: In this study, we investigated the AZA-BSA binding interaction using SPR system based on Kretchmann configuration. The study designed with fast, label-free and real-time approach will provide valuable knowledge for pharmaceutical and clinical applications.

References

  • Neufeld MY. Acetazolamide. Shorvon S, Perucca E, Engel J, editors. The Treatment of Epilepsy. UK: John Wiley&Sons, Ltd; 2016;p.376-387. DOI: 10.1002/9781118936979.ch28
  • Chaudhari LP, Patel, SN. Corrosion inhibition study of expired acetazolamide on mild steel in dilute hydrochloric acid solution. J Bio Tribo Corros. 2019;5:20. DOI: 10.1007/s40735-018-0212-6
  • Chufán EE, Pedregosa JC, Baldini ON, Bruno-Blanch L. Anticonvulsant activity of analogues of acetazolamide. Il Farmaco. 1999;54(11-12):838-841. DOI: 10.1016/S0014-827X(99)00096-8
  • Lim LL, Foldvary N, Mascha E, Lee J. Acetazolamide in women with catamenial epilepsy. Epilepsia. 2001;42(6):741-749. DOI: 10.1046/j.1528-1157.2001.33600.x
  • Lehmann B, Linnér E, Wistrand PJ. The pharmacokinetics of acetazolamide in relation to its use in the treatment of glaucoma and to its effects as an inhibitor of carbonic anhydrase. Raspé G, editor. Advances in the Biosciences 5: Schering Workshop on Pharmacokinetics, Berlin: Pergamon; 1970.p.197-217. DOI: 10.1016/B978-0-08-017548-5.50019-9
  • Kamil MAS, Nawfal AJ, Mahmood AS. Topiramate and acetazolamide combination a comparative study between high and low dose profile of side effects on metabolism. NeuroQuantology. 2022;20(5):382-386. DOI: 10.14704/nq.2022.20.5.NQ22185
  • Abutaleb NS, Elkashif A, Flaherty DP, Seleem MN. In vivo antibacterial activity of acetazolamide. Antimicrob Agents Chemother. 2021;65(4):e01715-20. DOI: 10.1128/aac.01715-20
  • Cazzamalli S, Figueras E, Pethő L, Borbély A, Steinkühler C, Neri D, Sewald N. In vivo antitumor activity of a novel acetazolamide-crytophycin conjugate for the treatment of renal cell carcinomas. ACS Omega. 2018;11:14726-14731. DOI: 10.1021/acsomega.8b02350
  • Tellone CI, Baldwing JK, Sofia RD. Teratogenic activity in the mouse after oral administration of acetazolamide. Drug Chem Toxicol. 1980;3(1):83-98. DOI: 10.3109/01480548009017835
  • Houston AH, McCarty LS. Carbonic anhydrase (acetazolamide-sensitive esterase) activity in the blood, gill and kidney of the thermally acclimated rainbow trout, Salmo gairdneri. J Exp Biol. 1978;73:15-27. DOI: 10.1242/jeb.73.1.15
  • Calvo R, Carlos R, Erill S. Effects of disease and acetazolamide on procaine hydrolysis by red blood cell enzymes. Clin Pharm Therap. 1980;27(2):179-183. DOI: 10.1038/clpt.1980.27
  • Arslan T, Türkoğlu EA, Şentürk M, Supuran CT. Synthesis and carbonic anhydrase inhibitory properties of novel chalcone substituted benzenesulfonamides [published correction appears in Bioorg Med Chem Lett. 2017 Aug 15;27(16):3944]. Bioorg Med Chem Lett. 2016;26(24):5867-5870. DOI: 10.1016/j.bmcl.2016.11.017
  • Hathout RM, Mansour S, Mortada ND, Guinedi AS. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS PharmSciTech. 2007;8(1):1. DOI: 10.1208/pt0801001
  • Maren TH, Robinson B. The pharmacology of acetazolamide as related to cerebrospinal fluid in the treatment of hydrocephalus. Bull Johns Hopkins Hosp. 1960;106:1-24.
  • Cimolai N. The neurological spectrum for acetazolamide pharmacotherapy: from basic science to clinical applications. SN Compr. Clin Med. 2021;3:2576-2592. DOI: 10.1007/s42399-021-01067-z
  • Berthelsen P. Cardiovascular performance and oxyhemoglobin dissociation after acetazolamide in metabolic alkalosis. Intensive Care Med. 1982;8:269-274. DOI: 10.1007/BF01716736
  • Shen Q, Wang L, Zhou H, Jiang HD, Yu LS, Zeng S. Stereoselective binding of chiral drugs to plasma proteins. Acta Pharmacol Sin. 2013;34:998-1006. DOI: 10.1038/aps.2013.78
  • Chan WL, Zhou A, Read RJ. Towards engineering hormone-binding globulins as drug delivery agents. PLoS One. 2014;9(11):e113402. DOI: 10.1371/journal.pone.0113402
  • Maciążek-Jurczyk M, Szkudlarek A, Chudzik M, Pożycka J, Sułkowska A. Alteration of human serum albumin binding properties induced by modifications: A review. Spectrochim Acta A Mol Biomol Spectrosc. 2018;188:675-683. DOI: 10.1016/j.saa.2017.05.023
  • Lu W, Wang S, Liu R, Guan Y, Zhang Y. Human serum albumin-imprinted polymers with high capacity and selectivity for abundant protein depletion. Acta Biomater. 2021;126:249-258. DOI: 10.1016/j.actbio.2021.03.010
  • Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: From bench to bedside. Mol Aspects Med. 2012;33(3):209-290. DOI: 10.1016/j.mam.2011.12.002
  • Michnik A, Michalik K, Kluczewska A, Drzazga Z. Comparative DSC study of human and bovine serum albumin. J Therm Anal Calorim. 2006;84(1):113-117. DOI: 10.1007/s10973-005-7170-1
  • Gelamo EL, Tabak M. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochim Acta A Mol Biomol Spectrosc. 2000;56(11):2255-2271. DOI: 10.1016/S1386-1425(00)00313-9
  • Sharifi M, Dolatabadi JE, Fathi F, Rashidi M, Jafari B, Tajalli H, Rashidi M-R. Kinetic and thermodynamic study of bovine serum albumin interaction with rifampicin using surface plasmon resonance and molecular docking methods. J Biomed Opt. 2017;22(3):37002. DOI: 10.1117/1.JBO.22.3.037002
  • Nedelkov D, Kiernan UA, Niederkofler EE, Tubbs KA, Nelson RW. Investigating diversity in human plasma proteins. Proc Natl Acad Sci U.S.A. 2005;102(31):10852-10857. DOI: 10.1073/pnas.0500426102
  • Otagiri M. A molecular functional study on the interactions of drugs with plasma proteins. Drug Metab Pharmacokinet. 2005;20(5):309-323. DOI: 10.2133/dmpk.20.309
  • Ràfols C, Zarza S, Bosch E. Molecular interactions between some non-steroidal anti-inflammatory drugs (NSAID׳s) and bovine (BSA) or human (HSA) serum albumin estimated by means of isothermal titration calorimetry (ITC) and frontal analysis capillary electrophoresis (FA/CE). Talanta. 2014;130:241-250. DOI: 10.1016/j.talanta.2014.06.060
  • Spinella R, Sawhney R, Jalan R. Albumin in chronic liver disease: Structure, functions and therapeutic implications. Hepatol Int. 2016;10:124-132. DOI: 10.1007/s12072-015-9665-6
  • Canoa P, Simón-Vázquez R, Popplewell J, González-Fernández Á. A quantitative binding study of fibrinogen and human serum albumin to metal oxide nanoparticles by surface plasmon resonance. Biosens Bioelectron. 2015;74:376-383. DOI: 10.1016/j.bios.2015.05.070
  • Farzaneh F, Dolatabadi JEN, Rashidi M-Z, Omidi Y. Kinetic studies of bovine serum albumin interaction with PG and TBHQ using surface plasmon resonance. Int J Biol Macromol. 2016;91:1045-1050. DOI: 10.1016/j.ijbiomac.2016.06.054
  • Jeong HH, Erdene N, Park JH, Jeong DH, Lee HY, Lee SK. Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance. Biosens Bioelectron. 2013;39(1):346-351. DOI: 10.1016/j.bios.2012.08.013
  • Uzun L, Say R, Ünal S, Denizli A. Production of surface plasmon resonance based assay kit for hepatitis diagnosis. Biosens Bioelectron. 2009;24(9):2878-2884. DOI: 10.1016/j.bios.2009.02.021
  • Prado AR, Díaz CAR, Nunes LGL, Oliveira JP, Guimarães MCC, Leal-Junior A, Ribeiro MRN, Pontes MJ. Surface plasmon resonance-based optical fiber sensors for H2S in situ detection. Plasmonics. 2021;16:787-797. DOI: 10.1007/s11468-020-01346-w
  • Alijani A, Fathi F, Nejati K, Rashidi M-R. Protective effect of crocin on endothelial cells integrity: Studied by surface plasmon resonance. Plasmonics. 2022;17:1369-1378. DOI: 10.1007/s11468-022-01615-w
  • Yi X, Xia Y, Ding B, Wu L, Hu S, Wang Z, Yang M, Wang J. Dual-Channel surface plasmon resonance for quantification of ApoE gene and genotype discrimination in unamplified genomic DNA extracts. ACS Sens. 2018;3(11):2402-2407. DOI: 10.1021/acssensors.8b00845
  • Afkham S, Hanaee J, Zakariazadeh M, Fathi F, Shafiee S, Soltani S. Molecular mechanism and thermodynamic study of rosuvastatin interaction with human serum albumin using a surface plasmon resonance method combined with a multi-spectroscopic, and molecular modeling approach. Eur J Pharm Sci. 2022;168:106005. DOI: 10.1016/j.ejps.2021.106005
  • Dibekkaya H, Saylan Y, Yılmaz F, Derazshamshir A, Denizli A. Surface plasmon resonance sensors for real-time detection of cyclic citrullinated peptide antibodies. J Macromol Sci A. 2016;53(9):585-594. DOI: 10.1080/10601325.2016.1201756
  • Jing J-Y, Wang Q, Zhao W-M, Wang B-T. Long-range surface plasmon resonance and its sensing applications: A review. Opt Lasers Eng. 2019;112:103-118. DOI: 10.1016/j.optlaseng.2018.09.013
  • Velasco-Garcia MN. Optical biosensors for probing at the cellular level: A review of recent progress and future prospects. Semin Cell Dev Biol. 2009;20:27-33. DOI: 10.1016/j.semcdb.2009.01.013
  • Yesudasu V, Pradhan HS. Performance enhancement of a novel surface plasmon resonance biosensor using thallium bromide. IEEE Trans Nanobioscience. 2022;21(2):206-215. DOI: 10.1109/TNB.2021.3114225
  • Kumar A, Kumar A, Srivastava SK. A study on surface plasmon resonance biosensor for the detection of CEA biomarker using 2D materials graphene, Mxene and MoS2. Optik. 2022;258:168885. DOI: 10.1016/j.ijleo.2022.168885
  • Ambrosetti E, Conti M, Teixeira AI, Zilio SD. Patterned carboxymethyl-dextran functionalized surfaces using organic mixed monolayers for biosensing applications. ACS Appl Bio Mater. 2022;5(7):3310-3319. DOI: 10.1021/acsabm.2c00311
  • Sinha RK. Wavelength modulation based surface plasmon resonance sensor for detection of cardiac marker proteins troponin I and troponin T. Sens Actuator A Phys. 2021;332:113104. DOI: 10.1016/j.sna.2021.113104
  • Chah S, Yi J, Pettit CM, Roy D, Fendler JH. Ionization and reprotonation of self-assembled mercaptopropionic acid monolayers investigated by surface plasmon resonance measurements. Langmuir. 2002;18(2):314-318. DOI: 10.1021/la011226y
  • Yamasaki K, Chuang VTG, Maruyama T, Otagiri M. Albumin-drug interaction and its clinical implication. Biochim Biophys Acta. 2013;1830:5435-5443. DOI: 10.1016/j.bbagen.2013.05.005
  • Kairys V, Baranauskiene L, Kazlauskiene M, Matulis D, Kazlauskas E. Binding affinity in drug design: Experimental and computational techniques. Expert Opin Drug Discov. 2019;14(8):755-768. DOI: 10.1080/17460441.2019.1623202
  • Asphahani F, Zheng X, Veiseh O, Thein M, Xu J, Ohuchi F, Zhang M. Effect of electrode surface modification with chlorotoxin on patterning single glioma cells. Phys Chem Chem Phys. 2011;13:8953-8960. DOI: 10.1039/C0CP02908D
  • Fathi F, Dolatanbadi JEN, Rashidi M-R, Omidi Y. Kinetic studies of bovine serum albumin interaction with PG and TBHQ using surface plasmon resonance. Int J Biol Macromol. 2016;9:1045-1050. DOI: 10.1016/j.ijbiomac.2016.06.054
  • Taheri RA, Rezayan AH, Rahimi F, Mohammadnejad J, Kamali M. Development of an immunosensor using oriented immobilized anti-OmpW for sensitive detection of Vibrio cholerae by surface plasmon resonance. Biosens Bioelectron. 2016;86:484-488. DOI: 10.1016/j.bios.2016.07.006
  • Xiao C-Q, Jiang F-L, Zhou B, Li R, Liu Y. Interaction between a cationic porphyrin and bovine serum albumin studied by surface plasmon resonance, fluorescence spectroscopy and cyclic voltammetry. Photochem Photobiol Sci. 2011;10:1110-1117. DOI: 10.1039/C1PP05008G
  • D’Aurelio R, Ashley J, Rodgers TL, Trinh L, Temblay J, Pleasants M, Tothill IE. Development of a nanoMIPs-SPR-based sensor for β-lactoglobulin detection. Chemosensors. 2020;8:94. DOI: 10.3390/chemosensors8040094
  • Chiu NF, Tai MJ, Nurrohman DT, Lin TL, Wang YH, Chen CY. Immunoassay-amplified responses using a functionalized MoS2-based SPR biosensor to detect PAPP-A2 in maternal serum samples to screen for fetal Down’s syndrome. Int J Nanomedicine. 2021;16:2715-2733. DOI: 10.2147/IJN.S296406
  • Mohammadzadeh-Asl S, Jafari A, Aghanejad A, Monirinasab H, Dolatabadi JEN. Kinetic and thermodynamic studies of sunitinib malate interaction with albumin using surface plasmon resonance and molecular docking methods. Microchem J. 2019;150:104089. DOI: 10.1016/j.microc.2019.104089
  • Müller WE, Wollert U. Human serum albumin as a ‘silent receptor’ for drugs and endogenous substances. Pharmacology. 1979;19:59-67. DOI: 10.1159/000137289
  • Epps DE, Raub TJ, Caiolfa V, Chiari A, Zamai M. Determination of the affinity of drugs toward serum albumin by measurement of the quenching of the intrinsic tryptophan fluorescence of the protein. J Pharm Pharmacol. 1999;51(1):41-48. DOI: 10.1211/0022357991772079
  • Karlsson R. SPR for molecular interaction analysis: A review of emerging application areas. J Mol Recognit. 2004;17:151-161. DOI: 10.1002/jmr.660
  • Olson RE, Christ DD. Plasma protein binding of drugs. Bristol JA, Robertson DW, Doherty AM, Plattner JJ, Hagmann WK, Wong WW, Trainor GL, editors. Annual Reports in Medicinal Chemistry. Delaware:Academic Press 1996.p.327-336. DOI: 10.1016/S0065-7743(08)60472-8
  • Kurkov SK, Loftsson T, Messner M, Madden D. Parenteral delivery of HPβCD: Effect on drug-HSA binding. AAPS PharmSciTech. 2010;11(3):1152-1158. DOI: 10.1208/s12249-010-9482-0
  • Swift CG. Prescribing in old age. Brit Med J. 1988;296:913-915. DOI: 10.1136/bmj.296.6626.913
  • Zhivkova ZD. Studies on drug-human serum albumin binding: the current state of the matter. Curr Pharm Des. 2015;21(14):1817-1830. DOI: 10.2174/1381612821666150302113710
  • Sandu N, Chilom CG, David M, Florescu M. Evaluation of the interaction of levothyroxine with bovine serum albumin using spectroscopic and molecular docking studies. J Biomol Struct Dyn. 2022;40(3):1139-1151. DOI: 10.1080/07391102.2020.1822919
  • Rezende JP, Hudson EA, De Paula HMC, Meinel RS, Da Silva AD, Da Silva LHM, Pires ACDS. Human serum albumin-resveratrol complex formation: Effect of the phenolic chemical structure on the kinetic and thermodynamic parameters of the interactions. Food Chem. 2020;307:125514. DOI: 10.1016/j.foodchem.2019.125514
  • Rich RL, Day YSN, Morton TA, Myszka DG. High-resolution and high-throughput protocols for measuring drug/human serum albumin interactions using BIACORE. Anal Biochem. 2001;296:197-207. DOI: 10.1006/abio.2001.5314
  • Shim YY, Reaney MJT. Kinetic interactions between cyclolinopeptides and immobilized human serum albumin by surface plasmon resonance. J Agric Food Chem. 2015;63(4):1099-1106. DOI: 10.1021/jf504811x
  • Fathi F, Sharifi M, Jafari A, Kakavandi N, Kashanian S, Dolatabadi JEN, Rashidi M-R. Kinetic and thermodynamic insights into interaction of albumin with piperacillin: Spectroscopic and molecular modeling approaches. J Mol Liq. 2019;296:111770. DOI: 10.1016/j.molliq.2019.111770
  • Sharifi M, Dolatabadi JEN, Fathi F, Zakariazadeh M, Barzegar A, Rashidi M, Tajalli H, Rashidi, M-R. Surface plasmon resonance and molecular docking studies of bovine serum albumin interaction with neomycin: Kinetic and thermodynamic analysis. Bioimpacts. 2017;7(2):91-97. DOI: 10.15171/bi.2017.12
Year 2023, , 703 - 709, 29.12.2023
https://doi.org/10.33808/clinexphealthsci.1218956

Abstract

References

  • Neufeld MY. Acetazolamide. Shorvon S, Perucca E, Engel J, editors. The Treatment of Epilepsy. UK: John Wiley&Sons, Ltd; 2016;p.376-387. DOI: 10.1002/9781118936979.ch28
  • Chaudhari LP, Patel, SN. Corrosion inhibition study of expired acetazolamide on mild steel in dilute hydrochloric acid solution. J Bio Tribo Corros. 2019;5:20. DOI: 10.1007/s40735-018-0212-6
  • Chufán EE, Pedregosa JC, Baldini ON, Bruno-Blanch L. Anticonvulsant activity of analogues of acetazolamide. Il Farmaco. 1999;54(11-12):838-841. DOI: 10.1016/S0014-827X(99)00096-8
  • Lim LL, Foldvary N, Mascha E, Lee J. Acetazolamide in women with catamenial epilepsy. Epilepsia. 2001;42(6):741-749. DOI: 10.1046/j.1528-1157.2001.33600.x
  • Lehmann B, Linnér E, Wistrand PJ. The pharmacokinetics of acetazolamide in relation to its use in the treatment of glaucoma and to its effects as an inhibitor of carbonic anhydrase. Raspé G, editor. Advances in the Biosciences 5: Schering Workshop on Pharmacokinetics, Berlin: Pergamon; 1970.p.197-217. DOI: 10.1016/B978-0-08-017548-5.50019-9
  • Kamil MAS, Nawfal AJ, Mahmood AS. Topiramate and acetazolamide combination a comparative study between high and low dose profile of side effects on metabolism. NeuroQuantology. 2022;20(5):382-386. DOI: 10.14704/nq.2022.20.5.NQ22185
  • Abutaleb NS, Elkashif A, Flaherty DP, Seleem MN. In vivo antibacterial activity of acetazolamide. Antimicrob Agents Chemother. 2021;65(4):e01715-20. DOI: 10.1128/aac.01715-20
  • Cazzamalli S, Figueras E, Pethő L, Borbély A, Steinkühler C, Neri D, Sewald N. In vivo antitumor activity of a novel acetazolamide-crytophycin conjugate for the treatment of renal cell carcinomas. ACS Omega. 2018;11:14726-14731. DOI: 10.1021/acsomega.8b02350
  • Tellone CI, Baldwing JK, Sofia RD. Teratogenic activity in the mouse after oral administration of acetazolamide. Drug Chem Toxicol. 1980;3(1):83-98. DOI: 10.3109/01480548009017835
  • Houston AH, McCarty LS. Carbonic anhydrase (acetazolamide-sensitive esterase) activity in the blood, gill and kidney of the thermally acclimated rainbow trout, Salmo gairdneri. J Exp Biol. 1978;73:15-27. DOI: 10.1242/jeb.73.1.15
  • Calvo R, Carlos R, Erill S. Effects of disease and acetazolamide on procaine hydrolysis by red blood cell enzymes. Clin Pharm Therap. 1980;27(2):179-183. DOI: 10.1038/clpt.1980.27
  • Arslan T, Türkoğlu EA, Şentürk M, Supuran CT. Synthesis and carbonic anhydrase inhibitory properties of novel chalcone substituted benzenesulfonamides [published correction appears in Bioorg Med Chem Lett. 2017 Aug 15;27(16):3944]. Bioorg Med Chem Lett. 2016;26(24):5867-5870. DOI: 10.1016/j.bmcl.2016.11.017
  • Hathout RM, Mansour S, Mortada ND, Guinedi AS. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS PharmSciTech. 2007;8(1):1. DOI: 10.1208/pt0801001
  • Maren TH, Robinson B. The pharmacology of acetazolamide as related to cerebrospinal fluid in the treatment of hydrocephalus. Bull Johns Hopkins Hosp. 1960;106:1-24.
  • Cimolai N. The neurological spectrum for acetazolamide pharmacotherapy: from basic science to clinical applications. SN Compr. Clin Med. 2021;3:2576-2592. DOI: 10.1007/s42399-021-01067-z
  • Berthelsen P. Cardiovascular performance and oxyhemoglobin dissociation after acetazolamide in metabolic alkalosis. Intensive Care Med. 1982;8:269-274. DOI: 10.1007/BF01716736
  • Shen Q, Wang L, Zhou H, Jiang HD, Yu LS, Zeng S. Stereoselective binding of chiral drugs to plasma proteins. Acta Pharmacol Sin. 2013;34:998-1006. DOI: 10.1038/aps.2013.78
  • Chan WL, Zhou A, Read RJ. Towards engineering hormone-binding globulins as drug delivery agents. PLoS One. 2014;9(11):e113402. DOI: 10.1371/journal.pone.0113402
  • Maciążek-Jurczyk M, Szkudlarek A, Chudzik M, Pożycka J, Sułkowska A. Alteration of human serum albumin binding properties induced by modifications: A review. Spectrochim Acta A Mol Biomol Spectrosc. 2018;188:675-683. DOI: 10.1016/j.saa.2017.05.023
  • Lu W, Wang S, Liu R, Guan Y, Zhang Y. Human serum albumin-imprinted polymers with high capacity and selectivity for abundant protein depletion. Acta Biomater. 2021;126:249-258. DOI: 10.1016/j.actbio.2021.03.010
  • Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: From bench to bedside. Mol Aspects Med. 2012;33(3):209-290. DOI: 10.1016/j.mam.2011.12.002
  • Michnik A, Michalik K, Kluczewska A, Drzazga Z. Comparative DSC study of human and bovine serum albumin. J Therm Anal Calorim. 2006;84(1):113-117. DOI: 10.1007/s10973-005-7170-1
  • Gelamo EL, Tabak M. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochim Acta A Mol Biomol Spectrosc. 2000;56(11):2255-2271. DOI: 10.1016/S1386-1425(00)00313-9
  • Sharifi M, Dolatabadi JE, Fathi F, Rashidi M, Jafari B, Tajalli H, Rashidi M-R. Kinetic and thermodynamic study of bovine serum albumin interaction with rifampicin using surface plasmon resonance and molecular docking methods. J Biomed Opt. 2017;22(3):37002. DOI: 10.1117/1.JBO.22.3.037002
  • Nedelkov D, Kiernan UA, Niederkofler EE, Tubbs KA, Nelson RW. Investigating diversity in human plasma proteins. Proc Natl Acad Sci U.S.A. 2005;102(31):10852-10857. DOI: 10.1073/pnas.0500426102
  • Otagiri M. A molecular functional study on the interactions of drugs with plasma proteins. Drug Metab Pharmacokinet. 2005;20(5):309-323. DOI: 10.2133/dmpk.20.309
  • Ràfols C, Zarza S, Bosch E. Molecular interactions between some non-steroidal anti-inflammatory drugs (NSAID׳s) and bovine (BSA) or human (HSA) serum albumin estimated by means of isothermal titration calorimetry (ITC) and frontal analysis capillary electrophoresis (FA/CE). Talanta. 2014;130:241-250. DOI: 10.1016/j.talanta.2014.06.060
  • Spinella R, Sawhney R, Jalan R. Albumin in chronic liver disease: Structure, functions and therapeutic implications. Hepatol Int. 2016;10:124-132. DOI: 10.1007/s12072-015-9665-6
  • Canoa P, Simón-Vázquez R, Popplewell J, González-Fernández Á. A quantitative binding study of fibrinogen and human serum albumin to metal oxide nanoparticles by surface plasmon resonance. Biosens Bioelectron. 2015;74:376-383. DOI: 10.1016/j.bios.2015.05.070
  • Farzaneh F, Dolatabadi JEN, Rashidi M-Z, Omidi Y. Kinetic studies of bovine serum albumin interaction with PG and TBHQ using surface plasmon resonance. Int J Biol Macromol. 2016;91:1045-1050. DOI: 10.1016/j.ijbiomac.2016.06.054
  • Jeong HH, Erdene N, Park JH, Jeong DH, Lee HY, Lee SK. Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance. Biosens Bioelectron. 2013;39(1):346-351. DOI: 10.1016/j.bios.2012.08.013
  • Uzun L, Say R, Ünal S, Denizli A. Production of surface plasmon resonance based assay kit for hepatitis diagnosis. Biosens Bioelectron. 2009;24(9):2878-2884. DOI: 10.1016/j.bios.2009.02.021
  • Prado AR, Díaz CAR, Nunes LGL, Oliveira JP, Guimarães MCC, Leal-Junior A, Ribeiro MRN, Pontes MJ. Surface plasmon resonance-based optical fiber sensors for H2S in situ detection. Plasmonics. 2021;16:787-797. DOI: 10.1007/s11468-020-01346-w
  • Alijani A, Fathi F, Nejati K, Rashidi M-R. Protective effect of crocin on endothelial cells integrity: Studied by surface plasmon resonance. Plasmonics. 2022;17:1369-1378. DOI: 10.1007/s11468-022-01615-w
  • Yi X, Xia Y, Ding B, Wu L, Hu S, Wang Z, Yang M, Wang J. Dual-Channel surface plasmon resonance for quantification of ApoE gene and genotype discrimination in unamplified genomic DNA extracts. ACS Sens. 2018;3(11):2402-2407. DOI: 10.1021/acssensors.8b00845
  • Afkham S, Hanaee J, Zakariazadeh M, Fathi F, Shafiee S, Soltani S. Molecular mechanism and thermodynamic study of rosuvastatin interaction with human serum albumin using a surface plasmon resonance method combined with a multi-spectroscopic, and molecular modeling approach. Eur J Pharm Sci. 2022;168:106005. DOI: 10.1016/j.ejps.2021.106005
  • Dibekkaya H, Saylan Y, Yılmaz F, Derazshamshir A, Denizli A. Surface plasmon resonance sensors for real-time detection of cyclic citrullinated peptide antibodies. J Macromol Sci A. 2016;53(9):585-594. DOI: 10.1080/10601325.2016.1201756
  • Jing J-Y, Wang Q, Zhao W-M, Wang B-T. Long-range surface plasmon resonance and its sensing applications: A review. Opt Lasers Eng. 2019;112:103-118. DOI: 10.1016/j.optlaseng.2018.09.013
  • Velasco-Garcia MN. Optical biosensors for probing at the cellular level: A review of recent progress and future prospects. Semin Cell Dev Biol. 2009;20:27-33. DOI: 10.1016/j.semcdb.2009.01.013
  • Yesudasu V, Pradhan HS. Performance enhancement of a novel surface plasmon resonance biosensor using thallium bromide. IEEE Trans Nanobioscience. 2022;21(2):206-215. DOI: 10.1109/TNB.2021.3114225
  • Kumar A, Kumar A, Srivastava SK. A study on surface plasmon resonance biosensor for the detection of CEA biomarker using 2D materials graphene, Mxene and MoS2. Optik. 2022;258:168885. DOI: 10.1016/j.ijleo.2022.168885
  • Ambrosetti E, Conti M, Teixeira AI, Zilio SD. Patterned carboxymethyl-dextran functionalized surfaces using organic mixed monolayers for biosensing applications. ACS Appl Bio Mater. 2022;5(7):3310-3319. DOI: 10.1021/acsabm.2c00311
  • Sinha RK. Wavelength modulation based surface plasmon resonance sensor for detection of cardiac marker proteins troponin I and troponin T. Sens Actuator A Phys. 2021;332:113104. DOI: 10.1016/j.sna.2021.113104
  • Chah S, Yi J, Pettit CM, Roy D, Fendler JH. Ionization and reprotonation of self-assembled mercaptopropionic acid monolayers investigated by surface plasmon resonance measurements. Langmuir. 2002;18(2):314-318. DOI: 10.1021/la011226y
  • Yamasaki K, Chuang VTG, Maruyama T, Otagiri M. Albumin-drug interaction and its clinical implication. Biochim Biophys Acta. 2013;1830:5435-5443. DOI: 10.1016/j.bbagen.2013.05.005
  • Kairys V, Baranauskiene L, Kazlauskiene M, Matulis D, Kazlauskas E. Binding affinity in drug design: Experimental and computational techniques. Expert Opin Drug Discov. 2019;14(8):755-768. DOI: 10.1080/17460441.2019.1623202
  • Asphahani F, Zheng X, Veiseh O, Thein M, Xu J, Ohuchi F, Zhang M. Effect of electrode surface modification with chlorotoxin on patterning single glioma cells. Phys Chem Chem Phys. 2011;13:8953-8960. DOI: 10.1039/C0CP02908D
  • Fathi F, Dolatanbadi JEN, Rashidi M-R, Omidi Y. Kinetic studies of bovine serum albumin interaction with PG and TBHQ using surface plasmon resonance. Int J Biol Macromol. 2016;9:1045-1050. DOI: 10.1016/j.ijbiomac.2016.06.054
  • Taheri RA, Rezayan AH, Rahimi F, Mohammadnejad J, Kamali M. Development of an immunosensor using oriented immobilized anti-OmpW for sensitive detection of Vibrio cholerae by surface plasmon resonance. Biosens Bioelectron. 2016;86:484-488. DOI: 10.1016/j.bios.2016.07.006
  • Xiao C-Q, Jiang F-L, Zhou B, Li R, Liu Y. Interaction between a cationic porphyrin and bovine serum albumin studied by surface plasmon resonance, fluorescence spectroscopy and cyclic voltammetry. Photochem Photobiol Sci. 2011;10:1110-1117. DOI: 10.1039/C1PP05008G
  • D’Aurelio R, Ashley J, Rodgers TL, Trinh L, Temblay J, Pleasants M, Tothill IE. Development of a nanoMIPs-SPR-based sensor for β-lactoglobulin detection. Chemosensors. 2020;8:94. DOI: 10.3390/chemosensors8040094
  • Chiu NF, Tai MJ, Nurrohman DT, Lin TL, Wang YH, Chen CY. Immunoassay-amplified responses using a functionalized MoS2-based SPR biosensor to detect PAPP-A2 in maternal serum samples to screen for fetal Down’s syndrome. Int J Nanomedicine. 2021;16:2715-2733. DOI: 10.2147/IJN.S296406
  • Mohammadzadeh-Asl S, Jafari A, Aghanejad A, Monirinasab H, Dolatabadi JEN. Kinetic and thermodynamic studies of sunitinib malate interaction with albumin using surface plasmon resonance and molecular docking methods. Microchem J. 2019;150:104089. DOI: 10.1016/j.microc.2019.104089
  • Müller WE, Wollert U. Human serum albumin as a ‘silent receptor’ for drugs and endogenous substances. Pharmacology. 1979;19:59-67. DOI: 10.1159/000137289
  • Epps DE, Raub TJ, Caiolfa V, Chiari A, Zamai M. Determination of the affinity of drugs toward serum albumin by measurement of the quenching of the intrinsic tryptophan fluorescence of the protein. J Pharm Pharmacol. 1999;51(1):41-48. DOI: 10.1211/0022357991772079
  • Karlsson R. SPR for molecular interaction analysis: A review of emerging application areas. J Mol Recognit. 2004;17:151-161. DOI: 10.1002/jmr.660
  • Olson RE, Christ DD. Plasma protein binding of drugs. Bristol JA, Robertson DW, Doherty AM, Plattner JJ, Hagmann WK, Wong WW, Trainor GL, editors. Annual Reports in Medicinal Chemistry. Delaware:Academic Press 1996.p.327-336. DOI: 10.1016/S0065-7743(08)60472-8
  • Kurkov SK, Loftsson T, Messner M, Madden D. Parenteral delivery of HPβCD: Effect on drug-HSA binding. AAPS PharmSciTech. 2010;11(3):1152-1158. DOI: 10.1208/s12249-010-9482-0
  • Swift CG. Prescribing in old age. Brit Med J. 1988;296:913-915. DOI: 10.1136/bmj.296.6626.913
  • Zhivkova ZD. Studies on drug-human serum albumin binding: the current state of the matter. Curr Pharm Des. 2015;21(14):1817-1830. DOI: 10.2174/1381612821666150302113710
  • Sandu N, Chilom CG, David M, Florescu M. Evaluation of the interaction of levothyroxine with bovine serum albumin using spectroscopic and molecular docking studies. J Biomol Struct Dyn. 2022;40(3):1139-1151. DOI: 10.1080/07391102.2020.1822919
  • Rezende JP, Hudson EA, De Paula HMC, Meinel RS, Da Silva AD, Da Silva LHM, Pires ACDS. Human serum albumin-resveratrol complex formation: Effect of the phenolic chemical structure on the kinetic and thermodynamic parameters of the interactions. Food Chem. 2020;307:125514. DOI: 10.1016/j.foodchem.2019.125514
  • Rich RL, Day YSN, Morton TA, Myszka DG. High-resolution and high-throughput protocols for measuring drug/human serum albumin interactions using BIACORE. Anal Biochem. 2001;296:197-207. DOI: 10.1006/abio.2001.5314
  • Shim YY, Reaney MJT. Kinetic interactions between cyclolinopeptides and immobilized human serum albumin by surface plasmon resonance. J Agric Food Chem. 2015;63(4):1099-1106. DOI: 10.1021/jf504811x
  • Fathi F, Sharifi M, Jafari A, Kakavandi N, Kashanian S, Dolatabadi JEN, Rashidi M-R. Kinetic and thermodynamic insights into interaction of albumin with piperacillin: Spectroscopic and molecular modeling approaches. J Mol Liq. 2019;296:111770. DOI: 10.1016/j.molliq.2019.111770
  • Sharifi M, Dolatabadi JEN, Fathi F, Zakariazadeh M, Barzegar A, Rashidi M, Tajalli H, Rashidi, M-R. Surface plasmon resonance and molecular docking studies of bovine serum albumin interaction with neomycin: Kinetic and thermodynamic analysis. Bioimpacts. 2017;7(2):91-97. DOI: 10.15171/bi.2017.12
There are 66 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biotechnology
Journal Section Articles
Authors

Emir Alper Türkoğlu 0000-0001-7850-6456

Fatma Gülruy Aydın 0000-0003-3320-8492

Publication Date December 29, 2023
Submission Date December 17, 2022
Published in Issue Year 2023

Cite

APA Türkoğlu, E. A., & Aydın, F. G. (2023). Surface Plasmon Resonance Binding Study on the Interaction of Acetazolamide and Bovine Serum Albumin. Clinical and Experimental Health Sciences, 13(4), 703-709. https://doi.org/10.33808/clinexphealthsci.1218956
AMA Türkoğlu EA, Aydın FG. Surface Plasmon Resonance Binding Study on the Interaction of Acetazolamide and Bovine Serum Albumin. Clinical and Experimental Health Sciences. December 2023;13(4):703-709. doi:10.33808/clinexphealthsci.1218956
Chicago Türkoğlu, Emir Alper, and Fatma Gülruy Aydın. “Surface Plasmon Resonance Binding Study on the Interaction of Acetazolamide and Bovine Serum Albumin”. Clinical and Experimental Health Sciences 13, no. 4 (December 2023): 703-9. https://doi.org/10.33808/clinexphealthsci.1218956.
EndNote Türkoğlu EA, Aydın FG (December 1, 2023) Surface Plasmon Resonance Binding Study on the Interaction of Acetazolamide and Bovine Serum Albumin. Clinical and Experimental Health Sciences 13 4 703–709.
IEEE E. A. Türkoğlu and F. G. Aydın, “Surface Plasmon Resonance Binding Study on the Interaction of Acetazolamide and Bovine Serum Albumin”, Clinical and Experimental Health Sciences, vol. 13, no. 4, pp. 703–709, 2023, doi: 10.33808/clinexphealthsci.1218956.
ISNAD Türkoğlu, Emir Alper - Aydın, Fatma Gülruy. “Surface Plasmon Resonance Binding Study on the Interaction of Acetazolamide and Bovine Serum Albumin”. Clinical and Experimental Health Sciences 13/4 (December 2023), 703-709. https://doi.org/10.33808/clinexphealthsci.1218956.
JAMA Türkoğlu EA, Aydın FG. Surface Plasmon Resonance Binding Study on the Interaction of Acetazolamide and Bovine Serum Albumin. Clinical and Experimental Health Sciences. 2023;13:703–709.
MLA Türkoğlu, Emir Alper and Fatma Gülruy Aydın. “Surface Plasmon Resonance Binding Study on the Interaction of Acetazolamide and Bovine Serum Albumin”. Clinical and Experimental Health Sciences, vol. 13, no. 4, 2023, pp. 703-9, doi:10.33808/clinexphealthsci.1218956.
Vancouver Türkoğlu EA, Aydın FG. Surface Plasmon Resonance Binding Study on the Interaction of Acetazolamide and Bovine Serum Albumin. Clinical and Experimental Health Sciences. 2023;13(4):703-9.

14639   14640