BibTex RIS Cite

Reactive oxygen species and oxidative stress in obesity

Year 2015, Volume: 5 Issue: 3, 197 - 203, 01.10.2015

Abstract

Obesity is a chronic disorder with increasing prevalence worldwide and occurs when energy intake is greater than energy expenditure.Oxidative stress is one of the factors that cause obesity and arises from an imbalance between the reactive oxygen species and cell’s antioxidant defense system. Increasing ROS in obesity has an effect on the hypothalamic neurons which are involved in hunger and satiety control and consequently body weight control. On the other hand, weight loss due to calorie restriction or exercise reduces oxidative stress. Although the enzyme systems responsible for ROS formation and antioxidant systems are located in different parts of the cell, mitochondria is the most important source for ROS formation. In electron transfer system, reactive oxygen species forming as a result of oxidative phosphorylation reactions are involved in various physiological processes such as cell proliferation and differentiation. In the present review, the causes of increased oxidative stress in obesity are updated based on the literature.

References

  • Sarma AD, Mallick AR, Ghosh AK. Free radicals and their role in different clinical conditions: an overview. Int J Pharma Sci Res. 2010;1(3):185-192.
  • Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010;4(8):118-126.
  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84.
  • Neeraj, Pramod J, Singh S, Singh J. Role of free radicals and antioxidants in human health and disease. Int J Curr Res Rev. 2013;5(19):14-22.
  • Rayner BS, Hua S, Sabaretnam T, Witting PK. Nitric oxide stimulates myoglobin gene and protein expression in vascular smooth muscle. Biochem J. 2009;423(2):169-177.
  • Brown GC, Borutaite V. Nitric oxide, mitochondria, and cell death. IUBMB Life. 2001;52(3-5):189-195.
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47-95.
  • Casteilla L, Rigoulet M, Penicaud L. Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUBMB Life. 2001;52(3-5):181- 188.
  • Ruperez AI, Gil A, Aguilera CM. Genetics of oxidative stress in obesity. Int J Mol Sci. 2014; 15(2):3118-3144.
  • Cox AG, Winterbourn CC, Hampton MB. Mitochondrial peroxiredoxin involvement in antioxidant defense and redox signaling. Biochem J. 2010;425(2):313-325.
  • Huh JY, Kim Y, Jeong J, Park J, Kim I, Huh KH, Kim YS, Woo HA, Rhee SG, Lee KJ, Ha H. Peroxiredoxin 3 is a key molecule regulating adipocyte oxidative stress, mitochondrial biogenesis, and adipokine expression. Antioxid RedoxSignal. 2012;16(3):229-243.
  • Ayala A, Munoz MF, Arguelles S. Lipit peroxidation: production, metabolism, and signaling mechanisms of malondialdehydeand 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;360438:1-31.
  • Repetto M, Semprine J, Boveris A. Chapter 1 Lipid peroxidation: chemical mechanism, biological implications and analytical determination, Lipid Peroxidation, Dr. Angel Catala (Ed), ISBN 978- 953-51-0716-3, Published: August 29, 2012 under CC BY 3.0 license. http://dx.doi.org/10.5772/45943.
  • Wong-ekkabut J, Xu Z, Triampo W, Tang I-M, Tieleman DP, Monticelli L. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J.2007;93(12):4225-4236.
  • Yina H, Coxa BE, Liub W, Porter NA, Morrowa JD, Milne GL. Identification of intact oxidation products of glycerophospholipids in vitro and in vivo using negative ion electrospray iontrap massspectrometry. J Mass Spectrom. 2009;44(5):672-680.
  • Block G, Dietrich M, Norkus EP, Morrow JD, Hudes M, Caan B, Packer L. Factors associated with oxidative stress in human populations. Am J Epidemiol. 2002;156(3):274-285.
  • Lima SC, Arrais RF, Almeida MG, Souza ZM, Pedrosa LF. Plasma lipid profile and lipid peroxidation in overweight or obese children and adolescents. J Pediatr (Rio J). 2004;80(1):23-28.
  • Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome.J Clin Invest. 2004;114(12):1752-1761.
  • Pihl E, Zilmer K, Kullisaar T, Kairane C, Magi A, Zilmer M. Atherogenic inflammatory and oxidative stress markers in relation to overweight values in male former athletes. Inter J Obes (Lond). 2006;30(1):141-146.
  • Sies H, Stahl W, Sevanian A. Nutritional, dietary and postprandial oxidative stress. J Nutr. 2005;135(5):969-972.
  • Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesity- associated oxidative stress: strategies finalized to improve redox state. Int J Mol Sci. 2013;14(5):10497-10538.
  • Le Lay S, Simard G, Martinez MC, Andriantsitohaina R. Oxidative stress and metabolic pathologies: from an adipocentric point of view. Oxid Med Cell Longev. 2014;908539:1-18.
  • Avignon A, Hokayem, Bisbal C, Lambert K. Dietary antioxidants: do they have a role to play in the on going fight against abnormal glucose metabolism? Nutrition. 2012;28(7-8):715-721.
  • Emekli N, Yiğitbaşı T. Klinik biyokimya, Akademi Ajans Matbaa 1. Baskı 2015, İstanbul.
  • Wang B, Trayhurn P. Acute and prolonged effects of TNF-α on the expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture. Pfluqers Arch. 2006;452(4):418-427.
  • Stienstra R, Tack CJ, Kanneganti TD, Joosten LA, Netea MG. The inflammasome putsobesity in the danger zone. Cell Metab. 2012;15(1):10-18.
  • Stenlof K, Wernstedt I, Fjallman T, Wallenius V, Wallenius K, Jansson JO. Interleukin-6 levels in the central nervous system are negatively correlated with fat mass in overweight/obese subjects. J Clin Endocrinol Metab. 2003;88(9):4379-4383.
  • Yiğitbaşı T, Baskın Y, Afacan G, Harmanda A. Obez hastalarda büyüme hormonu, leptin, amilin, glukagon benzeri peptid-1 düzeyleri ile insülin direnci arasındaki ilişki. Turk J Biochem. 2010;35(3);177-182.
  • Bondia-Pons I, Ryan L, Martinez JA. Oxidative stress and inflammation interactions in human obesity. J Physiol Biochem. 2012;68(4):701- 711.
  • Serra D, Mera P, Malandrino MI, Mir JF, Herrero L. Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal. 2013;19(3):269-284.
  • Bełtowski J. Leptinandtheregulation of endothelial function in physiological and pathological conditions. Clin Exp Pharmacol Physiol. 2012;39(2):168-178.
  • Le NA. Lipoprotein-associated oxidative stress: a new twist to the postprandial hypothesis. Int J Mol Sci. 2015;16(1):401-419.
  • Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G, Lambeth JD, Goldstein BJ. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insülin signal transduction. Mol Cell Biol. 2004;24(5):1844- 1854.
  • Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. 2010;1-10.
  • Chinnery PF. Mitochondrial disorders overview. 2000 Jun 8 [Updated 2014 Aug 14]. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Smith RJH, Dtephens K. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2015. Available from: http://www.ncbi.nlm.nih.gov/ books/NBK1224/
  • Martinez J. Mitocondrial oxidative stress and inflammation: A slalom to obesity and insülin resistance. J Physiol Biochem. 2006;62(4):303- 306.
  • Mainese K, Morhan S, Chong Z. Oxidative stress biology and cell injury during type 1 and 2 diabetes mellitus. Curr Neoruvasc Res. 2007;4(1):63-71.
  • Brondani LA, Assmann TS, Coutinho G, Duarte K, Gross JL, Canani LH, Crispim D. The role of the uncoupling protein 1 (UCP1) on the development of obesity and type 2 diabetes mellitus. Arq Bras Endocrinol Metab. 2012;56(4):215-225.
  • Karpe F, DickmannJR, Frayn KN. Fatty acids, obesity, and insülin resistance: Time for a reevaluation. Diabetes. 2011;60(10):2441-2449.
  • Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insülin resistance mice. PLoSOne 2013;8(1):e54059:1-8.
  • Wang S, Kaufman RJ. How does protein misfolding in the endoplasmic reticulum affect lipid metabolism in the liver? Curr Opin Lipidol. 2014;25(2):125-132.
  • Coen PM, Goodpaster BH. Role of intramyocelluar lipids in human health. Trends Endocrinol Metab. 2012;23(8):391-398.
  • Olivares-Corichi IM, Viquez MJ, Gutierrez-Lopez L, Ceballos-Reyes GM,Garcia-Sanchez JR. Oxidative stress present in the blood from obese patients modifies the structure and function of insulin. Horm Metab Res. 2011;43(11):748-753.
  • Wellen KE, Thompson CB. Cellular metabolicstress: considering how cells respond to nutrient excess. Mol Cell. 2010;40(2):323-332.
  • Rigoulet M, Yoboue ED, Devin A. Mitochondrial ROS generation and its regulation: mechanisms involved in H2O2 signaling. Antioxid Redox Signal. 2011;14(3):459-468.
  • Fischer AB. Redox signaling across cell membranes. Antioxid Redox Signal. 2009;11(6):1349-1356.
  • Ozata M, Mergen M, Oktenli C, Aydin A, Sanisoglu SY, Bolu E, Yilmaz MI, Sayal A, Isimer A, Ozdemir IC. Increased oxidative stress and hypozincemia in male obesity. Clin Biochem. 2002;35(8):627-631.
  • Hermsdorff HHM, Puchau B, Volp ACP, Barbosa KBF, Bressan J, Zulet MA, Martinez JA. Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutr Metab (Lond). 2011;8:59:1-8.
  • Bahadoran Z, Golzarand M, Mirmiran P, Shiva N, Azizi F. Dietary total antioxidant capacity and the occurrence of metabolic syndrome and its components after a 3-year follow-up in adults: Tehran Lipid and Glucose Study. Nutr Metab (Lond). 2012;9:70:1-9.
  • Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014;16(1):378-400.
  • Neels JG, Olefsky JM. Inflamed fat: What starts the fire? J Clin Investig. 2006;116:33-35.
  • Khaodhiar L, Ling PR, Blackburn GL, Bistrian BR.Serum levels of interleukin-6 and C-reactive protein correlate with body mass index across the broad range of obesity. 2004;28(6):410-415.
  • Mokdad AH, Ford ES, Bowman BA, Dietz WH,Vinicor F, Bales VS, Marks JS. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA. 2003; 289(1): 76-79.
  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17(10):1195-1214.
  • Galili O, Versari D, Sattler KJ, Olson ML, Mannheim D, McConnell JP, Chade AR, Lerman LO, Lerman A. Early experimental obesity is associated with endothelial dysfunction and oxidative stress. Am J Physiol Heart Circ Physiol. 2007;292(2):H904-H911.

Reaktif oksijen türleri ve obezitede oksidatif stres

Year 2015, Volume: 5 Issue: 3, 197 - 203, 01.10.2015

Abstract

Obezite; alınan enerjinin, harcanan enerjiden fazla olmasından kaynaklanan, tüm dünyada prevalansı endişe verici şekilde artan kronik bir hastalıktır. Obeziteye neden olan etkenlerden biri olan oksidatif stres, reaktif oksijen türleri (ROT) ile hücrenin antioksidan savunma sistemi arasındaki dengesizlikten ortaya çıkar. Obezitede artış gösteren ROT’lar hipotalamik nöronlar üzerinde etkili olarak, açlık ve tokluğun kontrolünde ve buna bağlı olarak vücut ağırlığının kontrolünde etkili olurlar. ROT arttığında, DNA, protein ve lipitlerin oksidasyonu yoluyla hücre zedelenmesi, nekroz ve apopitoz oluşur. Adipoz dokuda oksidatif stresin artışı obez kişilerde metabolik sendrom gelişmesine neden olur. Diğer yandan kalori kısıtlaması veya egzersiz nedeniyle kilo kaybı oksidatif stresi azaltır. ROT oluşumundan sorumlu enzim sistemleri ve antioksidan sistemlerin hücrede yerleşimi farklılık gösterse de mitokondri ROT oluşumunun en önemli kaynağıdır. Elektron transfer sisteminde, oksidatif fosforilasyon tepkimeleri sonucu oluşan ROT’lar, hücre sinyal mekanizması, hücre çoğalması ve farklılaşması gibi çeşitli fizyolojik olaylarda rol alırlar. Bu derlemede, obezitede artan oksidatif stresin nedenleri literatüre dayalı olarak güncellenmiştir.

References

  • Sarma AD, Mallick AR, Ghosh AK. Free radicals and their role in different clinical conditions: an overview. Int J Pharma Sci Res. 2010;1(3):185-192.
  • Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010;4(8):118-126.
  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84.
  • Neeraj, Pramod J, Singh S, Singh J. Role of free radicals and antioxidants in human health and disease. Int J Curr Res Rev. 2013;5(19):14-22.
  • Rayner BS, Hua S, Sabaretnam T, Witting PK. Nitric oxide stimulates myoglobin gene and protein expression in vascular smooth muscle. Biochem J. 2009;423(2):169-177.
  • Brown GC, Borutaite V. Nitric oxide, mitochondria, and cell death. IUBMB Life. 2001;52(3-5):189-195.
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47-95.
  • Casteilla L, Rigoulet M, Penicaud L. Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUBMB Life. 2001;52(3-5):181- 188.
  • Ruperez AI, Gil A, Aguilera CM. Genetics of oxidative stress in obesity. Int J Mol Sci. 2014; 15(2):3118-3144.
  • Cox AG, Winterbourn CC, Hampton MB. Mitochondrial peroxiredoxin involvement in antioxidant defense and redox signaling. Biochem J. 2010;425(2):313-325.
  • Huh JY, Kim Y, Jeong J, Park J, Kim I, Huh KH, Kim YS, Woo HA, Rhee SG, Lee KJ, Ha H. Peroxiredoxin 3 is a key molecule regulating adipocyte oxidative stress, mitochondrial biogenesis, and adipokine expression. Antioxid RedoxSignal. 2012;16(3):229-243.
  • Ayala A, Munoz MF, Arguelles S. Lipit peroxidation: production, metabolism, and signaling mechanisms of malondialdehydeand 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;360438:1-31.
  • Repetto M, Semprine J, Boveris A. Chapter 1 Lipid peroxidation: chemical mechanism, biological implications and analytical determination, Lipid Peroxidation, Dr. Angel Catala (Ed), ISBN 978- 953-51-0716-3, Published: August 29, 2012 under CC BY 3.0 license. http://dx.doi.org/10.5772/45943.
  • Wong-ekkabut J, Xu Z, Triampo W, Tang I-M, Tieleman DP, Monticelli L. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J.2007;93(12):4225-4236.
  • Yina H, Coxa BE, Liub W, Porter NA, Morrowa JD, Milne GL. Identification of intact oxidation products of glycerophospholipids in vitro and in vivo using negative ion electrospray iontrap massspectrometry. J Mass Spectrom. 2009;44(5):672-680.
  • Block G, Dietrich M, Norkus EP, Morrow JD, Hudes M, Caan B, Packer L. Factors associated with oxidative stress in human populations. Am J Epidemiol. 2002;156(3):274-285.
  • Lima SC, Arrais RF, Almeida MG, Souza ZM, Pedrosa LF. Plasma lipid profile and lipid peroxidation in overweight or obese children and adolescents. J Pediatr (Rio J). 2004;80(1):23-28.
  • Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome.J Clin Invest. 2004;114(12):1752-1761.
  • Pihl E, Zilmer K, Kullisaar T, Kairane C, Magi A, Zilmer M. Atherogenic inflammatory and oxidative stress markers in relation to overweight values in male former athletes. Inter J Obes (Lond). 2006;30(1):141-146.
  • Sies H, Stahl W, Sevanian A. Nutritional, dietary and postprandial oxidative stress. J Nutr. 2005;135(5):969-972.
  • Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesity- associated oxidative stress: strategies finalized to improve redox state. Int J Mol Sci. 2013;14(5):10497-10538.
  • Le Lay S, Simard G, Martinez MC, Andriantsitohaina R. Oxidative stress and metabolic pathologies: from an adipocentric point of view. Oxid Med Cell Longev. 2014;908539:1-18.
  • Avignon A, Hokayem, Bisbal C, Lambert K. Dietary antioxidants: do they have a role to play in the on going fight against abnormal glucose metabolism? Nutrition. 2012;28(7-8):715-721.
  • Emekli N, Yiğitbaşı T. Klinik biyokimya, Akademi Ajans Matbaa 1. Baskı 2015, İstanbul.
  • Wang B, Trayhurn P. Acute and prolonged effects of TNF-α on the expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture. Pfluqers Arch. 2006;452(4):418-427.
  • Stienstra R, Tack CJ, Kanneganti TD, Joosten LA, Netea MG. The inflammasome putsobesity in the danger zone. Cell Metab. 2012;15(1):10-18.
  • Stenlof K, Wernstedt I, Fjallman T, Wallenius V, Wallenius K, Jansson JO. Interleukin-6 levels in the central nervous system are negatively correlated with fat mass in overweight/obese subjects. J Clin Endocrinol Metab. 2003;88(9):4379-4383.
  • Yiğitbaşı T, Baskın Y, Afacan G, Harmanda A. Obez hastalarda büyüme hormonu, leptin, amilin, glukagon benzeri peptid-1 düzeyleri ile insülin direnci arasındaki ilişki. Turk J Biochem. 2010;35(3);177-182.
  • Bondia-Pons I, Ryan L, Martinez JA. Oxidative stress and inflammation interactions in human obesity. J Physiol Biochem. 2012;68(4):701- 711.
  • Serra D, Mera P, Malandrino MI, Mir JF, Herrero L. Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal. 2013;19(3):269-284.
  • Bełtowski J. Leptinandtheregulation of endothelial function in physiological and pathological conditions. Clin Exp Pharmacol Physiol. 2012;39(2):168-178.
  • Le NA. Lipoprotein-associated oxidative stress: a new twist to the postprandial hypothesis. Int J Mol Sci. 2015;16(1):401-419.
  • Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G, Lambeth JD, Goldstein BJ. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insülin signal transduction. Mol Cell Biol. 2004;24(5):1844- 1854.
  • Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. 2010;1-10.
  • Chinnery PF. Mitochondrial disorders overview. 2000 Jun 8 [Updated 2014 Aug 14]. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Smith RJH, Dtephens K. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2015. Available from: http://www.ncbi.nlm.nih.gov/ books/NBK1224/
  • Martinez J. Mitocondrial oxidative stress and inflammation: A slalom to obesity and insülin resistance. J Physiol Biochem. 2006;62(4):303- 306.
  • Mainese K, Morhan S, Chong Z. Oxidative stress biology and cell injury during type 1 and 2 diabetes mellitus. Curr Neoruvasc Res. 2007;4(1):63-71.
  • Brondani LA, Assmann TS, Coutinho G, Duarte K, Gross JL, Canani LH, Crispim D. The role of the uncoupling protein 1 (UCP1) on the development of obesity and type 2 diabetes mellitus. Arq Bras Endocrinol Metab. 2012;56(4):215-225.
  • Karpe F, DickmannJR, Frayn KN. Fatty acids, obesity, and insülin resistance: Time for a reevaluation. Diabetes. 2011;60(10):2441-2449.
  • Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insülin resistance mice. PLoSOne 2013;8(1):e54059:1-8.
  • Wang S, Kaufman RJ. How does protein misfolding in the endoplasmic reticulum affect lipid metabolism in the liver? Curr Opin Lipidol. 2014;25(2):125-132.
  • Coen PM, Goodpaster BH. Role of intramyocelluar lipids in human health. Trends Endocrinol Metab. 2012;23(8):391-398.
  • Olivares-Corichi IM, Viquez MJ, Gutierrez-Lopez L, Ceballos-Reyes GM,Garcia-Sanchez JR. Oxidative stress present in the blood from obese patients modifies the structure and function of insulin. Horm Metab Res. 2011;43(11):748-753.
  • Wellen KE, Thompson CB. Cellular metabolicstress: considering how cells respond to nutrient excess. Mol Cell. 2010;40(2):323-332.
  • Rigoulet M, Yoboue ED, Devin A. Mitochondrial ROS generation and its regulation: mechanisms involved in H2O2 signaling. Antioxid Redox Signal. 2011;14(3):459-468.
  • Fischer AB. Redox signaling across cell membranes. Antioxid Redox Signal. 2009;11(6):1349-1356.
  • Ozata M, Mergen M, Oktenli C, Aydin A, Sanisoglu SY, Bolu E, Yilmaz MI, Sayal A, Isimer A, Ozdemir IC. Increased oxidative stress and hypozincemia in male obesity. Clin Biochem. 2002;35(8):627-631.
  • Hermsdorff HHM, Puchau B, Volp ACP, Barbosa KBF, Bressan J, Zulet MA, Martinez JA. Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutr Metab (Lond). 2011;8:59:1-8.
  • Bahadoran Z, Golzarand M, Mirmiran P, Shiva N, Azizi F. Dietary total antioxidant capacity and the occurrence of metabolic syndrome and its components after a 3-year follow-up in adults: Tehran Lipid and Glucose Study. Nutr Metab (Lond). 2012;9:70:1-9.
  • Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014;16(1):378-400.
  • Neels JG, Olefsky JM. Inflamed fat: What starts the fire? J Clin Investig. 2006;116:33-35.
  • Khaodhiar L, Ling PR, Blackburn GL, Bistrian BR.Serum levels of interleukin-6 and C-reactive protein correlate with body mass index across the broad range of obesity. 2004;28(6):410-415.
  • Mokdad AH, Ford ES, Bowman BA, Dietz WH,Vinicor F, Bales VS, Marks JS. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA. 2003; 289(1): 76-79.
  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17(10):1195-1214.
  • Galili O, Versari D, Sattler KJ, Olson ML, Mannheim D, McConnell JP, Chade AR, Lerman LO, Lerman A. Early experimental obesity is associated with endothelial dysfunction and oxidative stress. Am J Physiol Heart Circ Physiol. 2007;292(2):H904-H911.
There are 55 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Nihal Büyükuslu This is me

Türkan Yiğitbaşı This is me

Publication Date October 1, 2015
Submission Date October 1, 2015
Published in Issue Year 2015 Volume: 5 Issue: 3

Cite

APA Büyükuslu, N., & Yiğitbaşı, T. (2015). Reaktif oksijen türleri ve obezitede oksidatif stres. Clinical and Experimental Health Sciences, 5(3), 197-203. https://doi.org/10.5455/musbed.20150604061607
AMA Büyükuslu N, Yiğitbaşı T. Reaktif oksijen türleri ve obezitede oksidatif stres. Clinical and Experimental Health Sciences. October 2015;5(3):197-203. doi:10.5455/musbed.20150604061607
Chicago Büyükuslu, Nihal, and Türkan Yiğitbaşı. “Reaktif Oksijen türleri Ve Obezitede Oksidatif Stres”. Clinical and Experimental Health Sciences 5, no. 3 (October 2015): 197-203. https://doi.org/10.5455/musbed.20150604061607.
EndNote Büyükuslu N, Yiğitbaşı T (October 1, 2015) Reaktif oksijen türleri ve obezitede oksidatif stres. Clinical and Experimental Health Sciences 5 3 197–203.
IEEE N. Büyükuslu and T. Yiğitbaşı, “Reaktif oksijen türleri ve obezitede oksidatif stres”, Clinical and Experimental Health Sciences, vol. 5, no. 3, pp. 197–203, 2015, doi: 10.5455/musbed.20150604061607.
ISNAD Büyükuslu, Nihal - Yiğitbaşı, Türkan. “Reaktif Oksijen türleri Ve Obezitede Oksidatif Stres”. Clinical and Experimental Health Sciences 5/3 (October 2015), 197-203. https://doi.org/10.5455/musbed.20150604061607.
JAMA Büyükuslu N, Yiğitbaşı T. Reaktif oksijen türleri ve obezitede oksidatif stres. Clinical and Experimental Health Sciences. 2015;5:197–203.
MLA Büyükuslu, Nihal and Türkan Yiğitbaşı. “Reaktif Oksijen türleri Ve Obezitede Oksidatif Stres”. Clinical and Experimental Health Sciences, vol. 5, no. 3, 2015, pp. 197-03, doi:10.5455/musbed.20150604061607.
Vancouver Büyükuslu N, Yiğitbaşı T. Reaktif oksijen türleri ve obezitede oksidatif stres. Clinical and Experimental Health Sciences. 2015;5(3):197-203.

14639   14640