Research Article
BibTex RIS Cite
Year 2019, Volume: 9 Issue: 3, 202 - 209, 30.09.2019
https://doi.org/10.33808/clinexphealthsci.599855

Abstract

References

  • 1. Nair S, Desai S, Poonacha N, Vipra A, Sharma U. Antibiofilm Activity and Synergistic Inhibition of Staphylococcus aureus Biofilms by Bactericidal Protein P128 in Combination with Antibiotics. Antimicrob Agents Chemother 2016; 60: 7280-7289.
  • 2. Tang HJ, Chen CC, Cheng KC, Toh HS, Su BA, Chiang SR, Ko WC, Chuang YC. In vitro efficacy of fosfomycin-containing regimens against methicillin-resistant Staphylococcus aureus in biofilms. J Antimicrob Chemother 2012; 67: 944-950.
  • 3. Gualtieri M, Bastide L, Villain-Guillot P, Michaux-Charachon S, Latouche J, Leonetti JP. In vitro activity of a new antibacterial rhodanine derivative against Staphylococcus epidermidis biofilms. J Antimicrob Chemother 2006; 58: 778-783.
  • 4. ten Broeke-Smits NJP, Kummer JA, Bleys RLAW, Fluit AC, Boel CHE. Hair follicles as a niche of Staphylococcus aureus in the nose; is a more effective decolonisation strategy needed? J Hosp Infect 2010; 76: 211-214.
  • 5. Von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med 2001; 344: 11-16.
  • 6. Hershow RC, Khayr WF, Smith NLA. Comparison of clinical virulance of nosocomially acquired methicillin-resistant and methicillin-sensitive Staphylococcus aureus infections in a university hospital. Infect Control Hosp Epidemiol 1992; 13: 587-593.
  • 7. Appelbaum PC. Microbiology of antibiotic resistance in Staphylococcus aureus. Clin Infect Dis 2007; 45: 165-170.
  • 8. Maor Y, Rahav G, Belausov N, Ben-David D, Smollan G, Keller N. Prevalence and haracteristics of heteroresistant vancomycin-intermediate Staphylococcus aureus bacteremia in a tertiary care center. J Clin Microbiol 2007; 45: 1511-1514.
  • 9. Smith K, Perez A, Ramage G, Gemmell CG, Lang S. Comparison of biofilm-associated cell survival following in vitro exposure of meticillin-resistant Staphylococcus aureus biofilms to the antibiotics clindamycin, daptomycin, linezolid, tigecycline and vancomycin. Int J Antimicrob Agents 2009; 33: 374-378.
  • 10. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010; 35: 322-332.
  • 11. Schlegelová J, Babák V, Holasová M, Dendis M. The biofilm-positive Staphylococcus epidermidis isolates in raw materials, foodstuffs and on contact surfaces in processing plants. Folia Microbiol (Praha) 2008; 53: 500-504.
  • 12. Nostro A, Cellini L, Ginestra G, D'Arrigo M, Giulio M, Marino A, Blanco AR, Favaloro A, Bisignano G. Staphylococcal biofilm formation as affected by type acidulant. APMIS 2014;122(7):648-653.
  • 13. Szczuka E, Kaznowski A. Antimicrobial activity of tigecycline alone or in combination with rifampin against Staphylococcus epidermidis in biofilm. Folia Microbiol (Praha) 2014; 59: 283-288.
  • 14. Schito GC. Why fosfomycin trometamol as first line therapy for uncomplicated UTI? Int J Antimicrob Agents 2003; 22: 79-83.
  • 15. Greenwood D. Fosfomycin and fosmidomycin. In: Finch RG, Greenwood D, Norrby SR, Whitley RJ, editor. Antibiotic and Chemotherapy. Toronto: Churchill Livingstone, 2003: 294-306. 16. Baylan O. Fosfomisin: Dünü, Bugünü ve Geleceği. Mikrobiyol Bul 2010; 44: 311-321.
  • 17. Geha DJ, Uhl JR, Gustaferro CA, Persing DH. Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. J Clin Microbiol 1994; 32: 1768–1772.
  • 18. Christensen GD, Simpson A, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitativemodel for the adherence of staphylococci to medical devices. J Clin Microbiol 1985; 22: 996–1006.
  • 19. Fredheim EGA, Klingenberg C, Rodhe H, Frankenberger S, Gaustad P, Fllaegstad T, Sollid JE. Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol 2009; 47: 1172–1180.
  • 20. Harriott MM, Noverr MC. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother 2009; 53: 3914-3922.
  • 21. Tré-Hardy M, Vanderbist F, Traore H, Devleeschouwer MJ. In vitro activity of antibiotic combinations against Pseudomonas aeruginosa biofilm and planktonic cultures. Int J Antimicrob Agents 2008; 31: 329-336.
  • 22. Shi J, Mao NF, Wang L, Zhang HB, Chen Q, Liu H, Tang X, Jin T, Zhu CT, Li FB, Sun LH, Xu XM, Xu YQ. Efficacy of combined vancomycin and fosfomycin against methicillin-resistant Staphylococcus aureus in biofilms in vivo. PloS one 2014; 9: 113-133.
  • 23. Chai D, Liu X, Wang R, Bai Y, Cai Y. Efficacy of Linezolid and Fosfomycin in Catheter-Related Biofilm Infection Caused by Methicillin-Resistant Staphylococcus aureus. Biomed Res Int 2016; 2016.
  • 24. Coraça‐Huber DC, Fille M, Hausdorfer J, Pfaller K, Nogler M. Staphylococcus aureus biofilm formation and antibiotic susceptibility tests on polystyrene and metal surfaces. J Appl Microbiol 2012; 112: 1235-1243.
  • 25. Mikuniya T, Kato Y, Ida T, Maebashi K, Monden K, Kariyama R, Kumon H. Treatment of Pseudomonas aeruginosa biofilms with a combination of fluoroquinolones and fosfomycin in a rat urinary tract infection model. J Infect Chemother 2007; 13: 285–290.
  • 26. Marchese A, Bozzolasco M, Gualco L, Debbia EA, Schito GC, Schito AM. Effect of fosfomycin alone and in combination with Nacetylcysteine on E. coli biofilms. Int J Antimicrob Agents 2003; 22: 95–100.
  • 27. Rebollo-Perez J, Ordonez-Tapia S, Herazo-Herazo C, Reyes-Ramos N. Nasal carriage of Panton Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus in healthy preschool children. Rev Salud Publica (Bogota) 2011; 13: 824-832.
  • 28. Kiliç A, Mert G, Senses Z, Bedir O, Aydogan H, Basustaoglu AC, Appelbaum PC. Molecular characterization of methicillin resistant Staphylococcus aureus nasal isolates from Turkey. Antonie Van Leeuwenhoek 2008; 94: 615-619.
  • 29. Dağı HT, Fındık D, Demirel G, Arslan U. Detection of methicillin resistance and various virulence factors in Staphylococcus aureus strains isolated from nasal carriers. Balkan Med J 2015; 32: 171-175.
  • 30. Hussain FM, Boyle-Vavra S, Daum RS. Communityacquired methicillin-resistant Staphylococcus aureus colonization in healthy children attending an outpatient pediatric clinic. Pediatr Infect Dis J 2001; 20: 763–767.
  • 31. Kenner J, O’Connor T, Piantanida N, Fishbain J, Eberly B, Viscount H, Uyehara C, Hospenthal D. Rates of carriage of methicillin resistant and methicillin-susceptible Staphylococcus aureus in an outpatient population. Infect Control Hosp Epidemiol 2003 ;24: 439–444.
  • 32. Nagaraju U, Bhat G, Kuruvila M, Pai GS, Jayalakshmi, Babu RP. Methicillin-resistant Staphylococcus aureus in community-acquired pyoderma. Int J Dermatol 2004; 43: 412–414.
  • 33. Vlack S, Cox L, Peleg AY, Canuto C, Stewart C, Conlon A, Stephens A, Giffard P, Huygens F, Mollinger A, Vohra R, McCarthy JS. Carriage of methicillin-resistant Staphylococcus aureus in a Queensland indigenous community. Med J Aust 2006; 184: 556–559.
  • 34. Barbieri R, Pesce M, Franchelli S, Baldelli I, De Maria A, Marchese A. Phenotypic and genotypic characterization of Staphylococci causing breast peri-implant infections in oncologic patients. BMC microbiol 2015; 15: 26-36.
  • 35. Atshan SS, Nor Shamsudin M, Sekawi Z, Lung LTT, Hamat RA, Karunanidhi A, Mateg Ali A, Ghaznavi-Rad E, Ghasemzadeh-Moghaddam H, Chong Seng JS, Nathan JJ, Pei CP. Prevalence of adhesion and regulation of biofilm-related genes in different clones of Staphylococcus aureus. J BioMed Biotechnol 2012; 2012.
  • 36. Nourbakhsh F, Namvar AE. Detection of genes involved in biofilm formation in Staphylococcus aureus isolates. GMS Hyg Infect control 2016; 11: Doc07.
  • 37. Bekir K, Haddad O, Grissa M, Chaieb K, Bakhrouf A, Elgarssdi SI. Molecular detection of adhesins genes and biofilm formation in methicillin resistant Staphylococcus aureus. Afr J Microbiol Res 2012; 6: 4908-4917.
  • 38. Lasa I, Penadés JR. Bap: A family of surface proteins involved in biofilm formation. Res Microbiol 2006: 157: 99-107.
  • 39. Tormo MA, Ubeda C, Martí M, Maiques E, Cucarella C, Valle J, Foster TJ, Lasa I, Penadés JR. Phase-variable expression of the biofilm-associated protein (Bap) in Staphylococcus aureus. Microbiology 2007; 153: 1702-1710.
  • 40. Babra C, Tiwari JG, Pier G, Thein TH, Sunagar R, Sundareshan S, Isloor S, Hegde NR, de Wet S, Deighton M, Gibson J, Costantino P, Wetherall J, Mukkur T. The persistence of biofilm-associated antibiotic resistance of Staphylococcus aureus isolated from clinical bovine mastitis cases in Australia. Folia Microbiol (Praha) 2013; 58: 469-474.
  • 41. Vautor E, Abadie G, Pont A, Thiery R. Evaluation of the presence of the bap gene in Staphylococcus aureus isolates recovered from human and animals species. Vet Microbiol 2008; 127: 407-411.
  • 42. Miller M. A, Dascal A, Portnoy J, Mendelson J. Development of mupirocin-resistance among methicillin-resistant Staphylococcus aureus after widespread use of nasal mupirocin ointment. Infect Control Hosp Epidemiol 1996; 17: 811–813.
  • 43. Upton A, Lang S, Heffernan H. Mupirocin and Staphylococcus aureus: a recent paradigm of emerging antibiotic resistance. J Antimicrob Chemother 2003; 51: 613–617.

In Vitro Activity of Fosfomycin on Biofilm in Community-Acquired Staphylococcus Aureus Isolates

Year 2019, Volume: 9 Issue: 3, 202 - 209, 30.09.2019
https://doi.org/10.33808/clinexphealthsci.599855

Abstract

Objective: Staphylococcus aureus is a significant
pathogen microorganism that can lead to serious infections. In this study, we
researched the activity of biofilm formation and fosfomycin on biofilm in
community-acquired S. aureus isolates
that were drawn from human noses.



Methods: Microtitration plate
method was used to determine biofilm formation. The effect of fosfomycin on
sessile cells was studied on biofilm matrix composed around plastic beads. The
icaA, icaD, icaB, icaC, bap, eno, fnbA, fnbB, clfA, clfB, fib, ebpS, cna and
mecA genes were screened by Polymerase Chain Reactions (PCR).




Results: S. aureus was isolated from 87 samples (13.2%) out of a total 658
nasal samples. We found that 10 of these isolates (11.4%) were
methicillin-resistant S. aureus
(MRSA). A total of 86 isolates had the ability to form biofilm. The biofilm
inhibitor concentration (BIC) and minimum biofilm eradication concentration
(MBEC) of fosfomycin were determined as 8 µg/ml and 32 µg/ml, respectively. In
the molecular detection results of biofilm-related genes of these isolates,
ica-dependent genes were determined to be quite high. However, no bap gene was
observed to be positive in any of the isolates. Among the other genes, the most
frequent genes to be declared positive were eno (97.6%) and fnbA (94.1%).



Conclusion: This study
indicates that prevalence of biofilm genes in S. aureus isolates in nasal flora is high and fosfomycin is an
effective anti-biofilm agent alone. However, to increase fosfomycin’s
efficiency, there is a need for more combination studies to make it more
effective.   

References

  • 1. Nair S, Desai S, Poonacha N, Vipra A, Sharma U. Antibiofilm Activity and Synergistic Inhibition of Staphylococcus aureus Biofilms by Bactericidal Protein P128 in Combination with Antibiotics. Antimicrob Agents Chemother 2016; 60: 7280-7289.
  • 2. Tang HJ, Chen CC, Cheng KC, Toh HS, Su BA, Chiang SR, Ko WC, Chuang YC. In vitro efficacy of fosfomycin-containing regimens against methicillin-resistant Staphylococcus aureus in biofilms. J Antimicrob Chemother 2012; 67: 944-950.
  • 3. Gualtieri M, Bastide L, Villain-Guillot P, Michaux-Charachon S, Latouche J, Leonetti JP. In vitro activity of a new antibacterial rhodanine derivative against Staphylococcus epidermidis biofilms. J Antimicrob Chemother 2006; 58: 778-783.
  • 4. ten Broeke-Smits NJP, Kummer JA, Bleys RLAW, Fluit AC, Boel CHE. Hair follicles as a niche of Staphylococcus aureus in the nose; is a more effective decolonisation strategy needed? J Hosp Infect 2010; 76: 211-214.
  • 5. Von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med 2001; 344: 11-16.
  • 6. Hershow RC, Khayr WF, Smith NLA. Comparison of clinical virulance of nosocomially acquired methicillin-resistant and methicillin-sensitive Staphylococcus aureus infections in a university hospital. Infect Control Hosp Epidemiol 1992; 13: 587-593.
  • 7. Appelbaum PC. Microbiology of antibiotic resistance in Staphylococcus aureus. Clin Infect Dis 2007; 45: 165-170.
  • 8. Maor Y, Rahav G, Belausov N, Ben-David D, Smollan G, Keller N. Prevalence and haracteristics of heteroresistant vancomycin-intermediate Staphylococcus aureus bacteremia in a tertiary care center. J Clin Microbiol 2007; 45: 1511-1514.
  • 9. Smith K, Perez A, Ramage G, Gemmell CG, Lang S. Comparison of biofilm-associated cell survival following in vitro exposure of meticillin-resistant Staphylococcus aureus biofilms to the antibiotics clindamycin, daptomycin, linezolid, tigecycline and vancomycin. Int J Antimicrob Agents 2009; 33: 374-378.
  • 10. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010; 35: 322-332.
  • 11. Schlegelová J, Babák V, Holasová M, Dendis M. The biofilm-positive Staphylococcus epidermidis isolates in raw materials, foodstuffs and on contact surfaces in processing plants. Folia Microbiol (Praha) 2008; 53: 500-504.
  • 12. Nostro A, Cellini L, Ginestra G, D'Arrigo M, Giulio M, Marino A, Blanco AR, Favaloro A, Bisignano G. Staphylococcal biofilm formation as affected by type acidulant. APMIS 2014;122(7):648-653.
  • 13. Szczuka E, Kaznowski A. Antimicrobial activity of tigecycline alone or in combination with rifampin against Staphylococcus epidermidis in biofilm. Folia Microbiol (Praha) 2014; 59: 283-288.
  • 14. Schito GC. Why fosfomycin trometamol as first line therapy for uncomplicated UTI? Int J Antimicrob Agents 2003; 22: 79-83.
  • 15. Greenwood D. Fosfomycin and fosmidomycin. In: Finch RG, Greenwood D, Norrby SR, Whitley RJ, editor. Antibiotic and Chemotherapy. Toronto: Churchill Livingstone, 2003: 294-306. 16. Baylan O. Fosfomisin: Dünü, Bugünü ve Geleceği. Mikrobiyol Bul 2010; 44: 311-321.
  • 17. Geha DJ, Uhl JR, Gustaferro CA, Persing DH. Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. J Clin Microbiol 1994; 32: 1768–1772.
  • 18. Christensen GD, Simpson A, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitativemodel for the adherence of staphylococci to medical devices. J Clin Microbiol 1985; 22: 996–1006.
  • 19. Fredheim EGA, Klingenberg C, Rodhe H, Frankenberger S, Gaustad P, Fllaegstad T, Sollid JE. Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol 2009; 47: 1172–1180.
  • 20. Harriott MM, Noverr MC. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother 2009; 53: 3914-3922.
  • 21. Tré-Hardy M, Vanderbist F, Traore H, Devleeschouwer MJ. In vitro activity of antibiotic combinations against Pseudomonas aeruginosa biofilm and planktonic cultures. Int J Antimicrob Agents 2008; 31: 329-336.
  • 22. Shi J, Mao NF, Wang L, Zhang HB, Chen Q, Liu H, Tang X, Jin T, Zhu CT, Li FB, Sun LH, Xu XM, Xu YQ. Efficacy of combined vancomycin and fosfomycin against methicillin-resistant Staphylococcus aureus in biofilms in vivo. PloS one 2014; 9: 113-133.
  • 23. Chai D, Liu X, Wang R, Bai Y, Cai Y. Efficacy of Linezolid and Fosfomycin in Catheter-Related Biofilm Infection Caused by Methicillin-Resistant Staphylococcus aureus. Biomed Res Int 2016; 2016.
  • 24. Coraça‐Huber DC, Fille M, Hausdorfer J, Pfaller K, Nogler M. Staphylococcus aureus biofilm formation and antibiotic susceptibility tests on polystyrene and metal surfaces. J Appl Microbiol 2012; 112: 1235-1243.
  • 25. Mikuniya T, Kato Y, Ida T, Maebashi K, Monden K, Kariyama R, Kumon H. Treatment of Pseudomonas aeruginosa biofilms with a combination of fluoroquinolones and fosfomycin in a rat urinary tract infection model. J Infect Chemother 2007; 13: 285–290.
  • 26. Marchese A, Bozzolasco M, Gualco L, Debbia EA, Schito GC, Schito AM. Effect of fosfomycin alone and in combination with Nacetylcysteine on E. coli biofilms. Int J Antimicrob Agents 2003; 22: 95–100.
  • 27. Rebollo-Perez J, Ordonez-Tapia S, Herazo-Herazo C, Reyes-Ramos N. Nasal carriage of Panton Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus in healthy preschool children. Rev Salud Publica (Bogota) 2011; 13: 824-832.
  • 28. Kiliç A, Mert G, Senses Z, Bedir O, Aydogan H, Basustaoglu AC, Appelbaum PC. Molecular characterization of methicillin resistant Staphylococcus aureus nasal isolates from Turkey. Antonie Van Leeuwenhoek 2008; 94: 615-619.
  • 29. Dağı HT, Fındık D, Demirel G, Arslan U. Detection of methicillin resistance and various virulence factors in Staphylococcus aureus strains isolated from nasal carriers. Balkan Med J 2015; 32: 171-175.
  • 30. Hussain FM, Boyle-Vavra S, Daum RS. Communityacquired methicillin-resistant Staphylococcus aureus colonization in healthy children attending an outpatient pediatric clinic. Pediatr Infect Dis J 2001; 20: 763–767.
  • 31. Kenner J, O’Connor T, Piantanida N, Fishbain J, Eberly B, Viscount H, Uyehara C, Hospenthal D. Rates of carriage of methicillin resistant and methicillin-susceptible Staphylococcus aureus in an outpatient population. Infect Control Hosp Epidemiol 2003 ;24: 439–444.
  • 32. Nagaraju U, Bhat G, Kuruvila M, Pai GS, Jayalakshmi, Babu RP. Methicillin-resistant Staphylococcus aureus in community-acquired pyoderma. Int J Dermatol 2004; 43: 412–414.
  • 33. Vlack S, Cox L, Peleg AY, Canuto C, Stewart C, Conlon A, Stephens A, Giffard P, Huygens F, Mollinger A, Vohra R, McCarthy JS. Carriage of methicillin-resistant Staphylococcus aureus in a Queensland indigenous community. Med J Aust 2006; 184: 556–559.
  • 34. Barbieri R, Pesce M, Franchelli S, Baldelli I, De Maria A, Marchese A. Phenotypic and genotypic characterization of Staphylococci causing breast peri-implant infections in oncologic patients. BMC microbiol 2015; 15: 26-36.
  • 35. Atshan SS, Nor Shamsudin M, Sekawi Z, Lung LTT, Hamat RA, Karunanidhi A, Mateg Ali A, Ghaznavi-Rad E, Ghasemzadeh-Moghaddam H, Chong Seng JS, Nathan JJ, Pei CP. Prevalence of adhesion and regulation of biofilm-related genes in different clones of Staphylococcus aureus. J BioMed Biotechnol 2012; 2012.
  • 36. Nourbakhsh F, Namvar AE. Detection of genes involved in biofilm formation in Staphylococcus aureus isolates. GMS Hyg Infect control 2016; 11: Doc07.
  • 37. Bekir K, Haddad O, Grissa M, Chaieb K, Bakhrouf A, Elgarssdi SI. Molecular detection of adhesins genes and biofilm formation in methicillin resistant Staphylococcus aureus. Afr J Microbiol Res 2012; 6: 4908-4917.
  • 38. Lasa I, Penadés JR. Bap: A family of surface proteins involved in biofilm formation. Res Microbiol 2006: 157: 99-107.
  • 39. Tormo MA, Ubeda C, Martí M, Maiques E, Cucarella C, Valle J, Foster TJ, Lasa I, Penadés JR. Phase-variable expression of the biofilm-associated protein (Bap) in Staphylococcus aureus. Microbiology 2007; 153: 1702-1710.
  • 40. Babra C, Tiwari JG, Pier G, Thein TH, Sunagar R, Sundareshan S, Isloor S, Hegde NR, de Wet S, Deighton M, Gibson J, Costantino P, Wetherall J, Mukkur T. The persistence of biofilm-associated antibiotic resistance of Staphylococcus aureus isolated from clinical bovine mastitis cases in Australia. Folia Microbiol (Praha) 2013; 58: 469-474.
  • 41. Vautor E, Abadie G, Pont A, Thiery R. Evaluation of the presence of the bap gene in Staphylococcus aureus isolates recovered from human and animals species. Vet Microbiol 2008; 127: 407-411.
  • 42. Miller M. A, Dascal A, Portnoy J, Mendelson J. Development of mupirocin-resistance among methicillin-resistant Staphylococcus aureus after widespread use of nasal mupirocin ointment. Infect Control Hosp Epidemiol 1996; 17: 811–813.
  • 43. Upton A, Lang S, Heffernan H. Mupirocin and Staphylococcus aureus: a recent paradigm of emerging antibiotic resistance. J Antimicrob Chemother 2003; 51: 613–617.
There are 42 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Fikriye Milletli Sezgin This is me 0000-0002-8317-2312

Mustafa Avcu This is me 0000-0003-4159-029X

Elif Sevim This is me 0000-0002-6455-1333

Ulken Tunga Babaoglu This is me 0000-0003-0275-0537

Publication Date September 30, 2019
Submission Date February 2, 2018
Published in Issue Year 2019 Volume: 9 Issue: 3

Cite

APA Sezgin, F. M., Avcu, M., Sevim, E., Babaoglu, U. T. (2019). In Vitro Activity of Fosfomycin on Biofilm in Community-Acquired Staphylococcus Aureus Isolates. Clinical and Experimental Health Sciences, 9(3), 202-209. https://doi.org/10.33808/clinexphealthsci.599855
AMA Sezgin FM, Avcu M, Sevim E, Babaoglu UT. In Vitro Activity of Fosfomycin on Biofilm in Community-Acquired Staphylococcus Aureus Isolates. Clinical and Experimental Health Sciences. September 2019;9(3):202-209. doi:10.33808/clinexphealthsci.599855
Chicago Sezgin, Fikriye Milletli, Mustafa Avcu, Elif Sevim, and Ulken Tunga Babaoglu. “In Vitro Activity of Fosfomycin on Biofilm in Community-Acquired Staphylococcus Aureus Isolates”. Clinical and Experimental Health Sciences 9, no. 3 (September 2019): 202-9. https://doi.org/10.33808/clinexphealthsci.599855.
EndNote Sezgin FM, Avcu M, Sevim E, Babaoglu UT (September 1, 2019) In Vitro Activity of Fosfomycin on Biofilm in Community-Acquired Staphylococcus Aureus Isolates. Clinical and Experimental Health Sciences 9 3 202–209.
IEEE F. M. Sezgin, M. Avcu, E. Sevim, and U. T. Babaoglu, “In Vitro Activity of Fosfomycin on Biofilm in Community-Acquired Staphylococcus Aureus Isolates”, Clinical and Experimental Health Sciences, vol. 9, no. 3, pp. 202–209, 2019, doi: 10.33808/clinexphealthsci.599855.
ISNAD Sezgin, Fikriye Milletli et al. “In Vitro Activity of Fosfomycin on Biofilm in Community-Acquired Staphylococcus Aureus Isolates”. Clinical and Experimental Health Sciences 9/3 (September 2019), 202-209. https://doi.org/10.33808/clinexphealthsci.599855.
JAMA Sezgin FM, Avcu M, Sevim E, Babaoglu UT. In Vitro Activity of Fosfomycin on Biofilm in Community-Acquired Staphylococcus Aureus Isolates. Clinical and Experimental Health Sciences. 2019;9:202–209.
MLA Sezgin, Fikriye Milletli et al. “In Vitro Activity of Fosfomycin on Biofilm in Community-Acquired Staphylococcus Aureus Isolates”. Clinical and Experimental Health Sciences, vol. 9, no. 3, 2019, pp. 202-9, doi:10.33808/clinexphealthsci.599855.
Vancouver Sezgin FM, Avcu M, Sevim E, Babaoglu UT. In Vitro Activity of Fosfomycin on Biofilm in Community-Acquired Staphylococcus Aureus Isolates. Clinical and Experimental Health Sciences. 2019;9(3):202-9.

14639   14640