Research Article
BibTex RIS Cite

Investigation of Neurogenesis in Kindled Wistar and Genetic Absence Epilepsy Rats

Year 2022, Volume: 12 Issue: 3, 753 - 759, 28.09.2022
https://doi.org/10.33808/clinexphealthsci.1021171

Abstract

Objective: The most common type of epilepsy affecting about 50 million people worldwide is temporal lobe epilepsy (TLE). Chemical and electrical kindling methods in animals can be used to form TLE model. In the present study, it was aimed to investigate neurogenesis in the hippocampus of adult kindled Wistar rats and genetic absence epilepsy rats from Strasbourg (GAERS) rats by immunofluorescence methods.

Methods: Adult Wistar and GAERS albino rats weighing 250-300 gr were injected pentylenetetrazole (PTZ) (35 mg/kg, s.c.) every other day to produce chemical kindling. Animals having 5 times grade 5 seizures were considered to be kindled. Intracardiac perfusion was performed under deep anesthesia on the 7th and 14th days after the last grade 5 seizure. Immunofluorescence methods were used to demonstrate newly formed neurons, astroglial cells, and mature neurons, by using anti-doublecortin (DCX), anti-glial fibrillary acidic protein (GFAP), and anti- neuronal nuclear antigen (NeuN) primary antibodies, respectively. Sections were then examined under a fluorescence microscope.

Results: DCX (+) cells were found to be increased in GAERS control groups compared to the Wistar control groups; and in Wistar PTZ groups compared to the Wistar control groups. DCX (+) cells were decreased in GAERS PTZ groups compared to their controls and to Wistar PTZ groups.

Conclusion: The findings of the present study suggest that the resistance to electrical kindling of GAERS reported in previous studies might be related to the increased neurogenesis in this strain.

Supporting Institution

Marmara University Research Fund

Project Number

SAG-C-YLP-131217-0654

References

  • [1] Kuruba R, Hattiangady B, Shetty A.K. Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy. Epilepsy Behav 2009;14(Suppl 1):65-73.
  • [2] Engel J Jr. Intractable epilepsy: Definition and neurobiology. Epilepsia 2001;42(Suppl 6):3.
  • [3] Geller EB, Lancman ME, Van Ness P, Dinner DS. Coexistence of generalized and partial epilepsies. Electroencephalogr Clin Neurophysiol 1995;95:17P.
  • [4] Koutroumanidis M, Hennessy M, Elwes RD, Binnie CD, Polkey CE. Coexistence of temporal lobe and idiopathic generalized epilepsies. Neurol 1999;53(3):490-495.
  • [5] Eskazan E, Onat FY, Aker R, Oner G. Resistance to propagation of amygdaloid kindling seizures in rats with genetic absence epilepsy. Epilepsia 2002;43(10):1115-1119.
  • [6] Altman J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 1969;137(4):433-457.
  • [7] Praag HV, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature 2002;415(6875):1030-1034.
  • [8] Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 1997;17(10):3727- 3728.
  • [9] Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 2001;435(4):406-417.
  • [10] Avanzini G, Franceshetti S. Cellular biology of epileptogenesis. Lancet Neurol 2003;2(1):33-42.
  • [11] Scharfman HE, Goodman JH, Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci 2002;20(16):6144-6158.
  • [12] Bengzon J, Kokaia Z, Elmér E, Nanobashvili A, Kokaia M, Lindvall O. Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci USA 1997;94(19):10432-10437.
  • [13] Clark PJ, Kohman RA, Miller DS, Bhattacharya TK, Haferkamp EH, Rhodes JS. Adult hippocampal neurogenesis and c-fos induction during escalation of voluntary wheel running in C57BL/6J mice. Behav Brain Res 2010;213(2):246-252.
  • [14] Francis N, Farinas I, Brennan C, Rivas-Plata K, Backus C, Reichardt L, Landis S. NT-3, like NGF, is required for survival of sympathetic neurons, but not their precursors. Dev Biol 1999;210(2):411-427.
  • [15] Racine RJ. Modification of seizure activity by electrical stimulation. I. After-discharge threshold. Electroencephalogr Clin Neurophysiol 1972a;32(3):2269-2279.
  • [16] Racine R.J. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 1972b;32(3):281-294.
  • [17] Park JH, Cho H, Kim H, Kim K. Repeated brief epileptic seizures by pentylenetetrazole cause neurodegeneration and promote neurogenesis in discrete brain regions of freely moving adult rats. Neuroscience 2006;140(2):673-684.
  • [18] Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci 2004;5(7):553-564.
  • [19] Fuentealba LC, Obernier K, Alvarez-Buylla A. Adult neural stem cells bridge their niche. Stem Cell 2012;10(6):698-708.
  • [20] Richards DA, Lemos T, Whitton PS Bowery NG. Extracellular GABA in the ventrolateral thalamus of rats exhibiting spontaneous absence epilepsy: a microdialysis study. J Neurochem 1995;65(4):1674-1680.
  • [21] Vergnes M, Boehrer A, Reibel S, Simler S, Marescaux C. Selective susceptibility to inhibitors of GABA synthesis and antagonists of GABA(A) receptor in rats with genetic absence epilepsy. Exp Neurol 2000;161(2):714-723.
  • [22] Brailowsky S, Montiel T, Boehrer A, Marescaux C, Vergnes M. Susceptibility to focal and generalized seizures in Wistar rats with genetic absence-like epilepsy. Neuroscience 1999;93(3):1173-1177.
  • [23] Gray WP, Sundstrom LE. Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res 1998;790(1-2):52-59.
  • [24] Fahrner A, Kann G, Flubacher A, Heinrich C, Freiman TM, Zentner J, Frotscher M, Haas CA. Granule cell dispersion is not accompanied by enhanced neurogenesis in temporal lobe epilepsy patients. Exp Neurol 2007;203(2):320-332.
  • [25] Scott BW, Chan KF, Wong G, Ahmed M, Chieverton L, Liu RR, Wood J, Burnham WM. Cytogenesis in the adult rat dentate gyrus is increased following kindled seizures but is unaltered in pharmacological models of absence seizures. Epilepsy Behav 2010;18(3): 179-185.
  • [26] Russo E, Citraro R, Donato G, Camastra C, Iuliano R, Cuzzocrea S, Constanti A, De Sarro G. mTOR inhibition modulates epileptogenesis, seizures and depressive behavior in a genetic rat model of absence epilepsy. Neuropharmacol 2013;69: 25-36.
  • [27] Verwer RW, Sluiter AA, Balesar RA, Baayen JC, Noske DP, Dirven CM, Wouda J, van Dam AM, Lucassen PJ, Swaab DF. Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin. Brain 2007;130(Pt12):3321- 3335.
  • [28] Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MW. GFAP- expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 2004;7(11):1233-1241.
  • [29] Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 2003;467(1):1- 10.
  • [30] Yang HK, Sundholm-Peters NL, Goings GE, Walker AS, Hyland K, Szele FG. Distribution of doublecortin expressing cells near the lateral ventricles in the adult mouse brain. J Neurosci Res 2004;76(3):282-295.
  • [31] Liu MA, Curtis HM, Gibbons EW, Mee PS, Bergin HH, Teoh B, Connor M, Dragunow M, Faull RL. Doublecortin expression in the normal and epileptic adult human brain. Eur J Neurosci 2008;28(11):2254-2265.
Year 2022, Volume: 12 Issue: 3, 753 - 759, 28.09.2022
https://doi.org/10.33808/clinexphealthsci.1021171

Abstract

Project Number

SAG-C-YLP-131217-0654

References

  • [1] Kuruba R, Hattiangady B, Shetty A.K. Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy. Epilepsy Behav 2009;14(Suppl 1):65-73.
  • [2] Engel J Jr. Intractable epilepsy: Definition and neurobiology. Epilepsia 2001;42(Suppl 6):3.
  • [3] Geller EB, Lancman ME, Van Ness P, Dinner DS. Coexistence of generalized and partial epilepsies. Electroencephalogr Clin Neurophysiol 1995;95:17P.
  • [4] Koutroumanidis M, Hennessy M, Elwes RD, Binnie CD, Polkey CE. Coexistence of temporal lobe and idiopathic generalized epilepsies. Neurol 1999;53(3):490-495.
  • [5] Eskazan E, Onat FY, Aker R, Oner G. Resistance to propagation of amygdaloid kindling seizures in rats with genetic absence epilepsy. Epilepsia 2002;43(10):1115-1119.
  • [6] Altman J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 1969;137(4):433-457.
  • [7] Praag HV, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature 2002;415(6875):1030-1034.
  • [8] Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 1997;17(10):3727- 3728.
  • [9] Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 2001;435(4):406-417.
  • [10] Avanzini G, Franceshetti S. Cellular biology of epileptogenesis. Lancet Neurol 2003;2(1):33-42.
  • [11] Scharfman HE, Goodman JH, Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci 2002;20(16):6144-6158.
  • [12] Bengzon J, Kokaia Z, Elmér E, Nanobashvili A, Kokaia M, Lindvall O. Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci USA 1997;94(19):10432-10437.
  • [13] Clark PJ, Kohman RA, Miller DS, Bhattacharya TK, Haferkamp EH, Rhodes JS. Adult hippocampal neurogenesis and c-fos induction during escalation of voluntary wheel running in C57BL/6J mice. Behav Brain Res 2010;213(2):246-252.
  • [14] Francis N, Farinas I, Brennan C, Rivas-Plata K, Backus C, Reichardt L, Landis S. NT-3, like NGF, is required for survival of sympathetic neurons, but not their precursors. Dev Biol 1999;210(2):411-427.
  • [15] Racine RJ. Modification of seizure activity by electrical stimulation. I. After-discharge threshold. Electroencephalogr Clin Neurophysiol 1972a;32(3):2269-2279.
  • [16] Racine R.J. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 1972b;32(3):281-294.
  • [17] Park JH, Cho H, Kim H, Kim K. Repeated brief epileptic seizures by pentylenetetrazole cause neurodegeneration and promote neurogenesis in discrete brain regions of freely moving adult rats. Neuroscience 2006;140(2):673-684.
  • [18] Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci 2004;5(7):553-564.
  • [19] Fuentealba LC, Obernier K, Alvarez-Buylla A. Adult neural stem cells bridge their niche. Stem Cell 2012;10(6):698-708.
  • [20] Richards DA, Lemos T, Whitton PS Bowery NG. Extracellular GABA in the ventrolateral thalamus of rats exhibiting spontaneous absence epilepsy: a microdialysis study. J Neurochem 1995;65(4):1674-1680.
  • [21] Vergnes M, Boehrer A, Reibel S, Simler S, Marescaux C. Selective susceptibility to inhibitors of GABA synthesis and antagonists of GABA(A) receptor in rats with genetic absence epilepsy. Exp Neurol 2000;161(2):714-723.
  • [22] Brailowsky S, Montiel T, Boehrer A, Marescaux C, Vergnes M. Susceptibility to focal and generalized seizures in Wistar rats with genetic absence-like epilepsy. Neuroscience 1999;93(3):1173-1177.
  • [23] Gray WP, Sundstrom LE. Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res 1998;790(1-2):52-59.
  • [24] Fahrner A, Kann G, Flubacher A, Heinrich C, Freiman TM, Zentner J, Frotscher M, Haas CA. Granule cell dispersion is not accompanied by enhanced neurogenesis in temporal lobe epilepsy patients. Exp Neurol 2007;203(2):320-332.
  • [25] Scott BW, Chan KF, Wong G, Ahmed M, Chieverton L, Liu RR, Wood J, Burnham WM. Cytogenesis in the adult rat dentate gyrus is increased following kindled seizures but is unaltered in pharmacological models of absence seizures. Epilepsy Behav 2010;18(3): 179-185.
  • [26] Russo E, Citraro R, Donato G, Camastra C, Iuliano R, Cuzzocrea S, Constanti A, De Sarro G. mTOR inhibition modulates epileptogenesis, seizures and depressive behavior in a genetic rat model of absence epilepsy. Neuropharmacol 2013;69: 25-36.
  • [27] Verwer RW, Sluiter AA, Balesar RA, Baayen JC, Noske DP, Dirven CM, Wouda J, van Dam AM, Lucassen PJ, Swaab DF. Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin. Brain 2007;130(Pt12):3321- 3335.
  • [28] Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MW. GFAP- expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 2004;7(11):1233-1241.
  • [29] Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 2003;467(1):1- 10.
  • [30] Yang HK, Sundholm-Peters NL, Goings GE, Walker AS, Hyland K, Szele FG. Distribution of doublecortin expressing cells near the lateral ventricles in the adult mouse brain. J Neurosci Res 2004;76(3):282-295.
  • [31] Liu MA, Curtis HM, Gibbons EW, Mee PS, Bergin HH, Teoh B, Connor M, Dragunow M, Faull RL. Doublecortin expression in the normal and epileptic adult human brain. Eur J Neurosci 2008;28(11):2254-2265.
There are 31 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Cansu Kandemir 0000-0002-3451-2771

Melis Yavuz 0000-0003-1250-9755

Fatma Bedia Karakaya This is me 0000-0001-6054-0752

Özlem Tuğçe Çilingir-kaya 0000-0002-2591-9174

Filiz Onat This is me 0000-0003-0680-4782

Serap Şirvancı 0000-0001-7683-4587

Project Number SAG-C-YLP-131217-0654
Publication Date September 28, 2022
Submission Date November 9, 2021
Published in Issue Year 2022 Volume: 12 Issue: 3

Cite

APA Kandemir, C., Yavuz, M., Karakaya, F. B., Çilingir-kaya, Ö. T., et al. (2022). Investigation of Neurogenesis in Kindled Wistar and Genetic Absence Epilepsy Rats. Clinical and Experimental Health Sciences, 12(3), 753-759. https://doi.org/10.33808/clinexphealthsci.1021171
AMA Kandemir C, Yavuz M, Karakaya FB, Çilingir-kaya ÖT, Onat F, Şirvancı S. Investigation of Neurogenesis in Kindled Wistar and Genetic Absence Epilepsy Rats. Clinical and Experimental Health Sciences. September 2022;12(3):753-759. doi:10.33808/clinexphealthsci.1021171
Chicago Kandemir, Cansu, Melis Yavuz, Fatma Bedia Karakaya, Özlem Tuğçe Çilingir-kaya, Filiz Onat, and Serap Şirvancı. “Investigation of Neurogenesis in Kindled Wistar and Genetic Absence Epilepsy Rats”. Clinical and Experimental Health Sciences 12, no. 3 (September 2022): 753-59. https://doi.org/10.33808/clinexphealthsci.1021171.
EndNote Kandemir C, Yavuz M, Karakaya FB, Çilingir-kaya ÖT, Onat F, Şirvancı S (September 1, 2022) Investigation of Neurogenesis in Kindled Wistar and Genetic Absence Epilepsy Rats. Clinical and Experimental Health Sciences 12 3 753–759.
IEEE C. Kandemir, M. Yavuz, F. B. Karakaya, Ö. T. Çilingir-kaya, F. Onat, and S. Şirvancı, “Investigation of Neurogenesis in Kindled Wistar and Genetic Absence Epilepsy Rats”, Clinical and Experimental Health Sciences, vol. 12, no. 3, pp. 753–759, 2022, doi: 10.33808/clinexphealthsci.1021171.
ISNAD Kandemir, Cansu et al. “Investigation of Neurogenesis in Kindled Wistar and Genetic Absence Epilepsy Rats”. Clinical and Experimental Health Sciences 12/3 (September 2022), 753-759. https://doi.org/10.33808/clinexphealthsci.1021171.
JAMA Kandemir C, Yavuz M, Karakaya FB, Çilingir-kaya ÖT, Onat F, Şirvancı S. Investigation of Neurogenesis in Kindled Wistar and Genetic Absence Epilepsy Rats. Clinical and Experimental Health Sciences. 2022;12:753–759.
MLA Kandemir, Cansu et al. “Investigation of Neurogenesis in Kindled Wistar and Genetic Absence Epilepsy Rats”. Clinical and Experimental Health Sciences, vol. 12, no. 3, 2022, pp. 753-9, doi:10.33808/clinexphealthsci.1021171.
Vancouver Kandemir C, Yavuz M, Karakaya FB, Çilingir-kaya ÖT, Onat F, Şirvancı S. Investigation of Neurogenesis in Kindled Wistar and Genetic Absence Epilepsy Rats. Clinical and Experimental Health Sciences. 2022;12(3):753-9.

14639   14640