Review
BibTex RIS Cite

The Roles of the Golgi in Various Diseases

Year 2024, Volume: 14 Issue: 1, 264 - 272, 28.03.2024
https://doi.org/10.33808/clinexphealthsci.1148777

Abstract

The primary function of the Golgi is to perform post-translational modifications on proteins, allow them to be transported within the cell. The Golgi has more functions in the cell, according to research into its unknown structure and functions. It has been discovered that, in addition to substance process and transport, it plays a role in autophagy, lipid formation, calcium homeostasis, and apoptosis regulation.
The fact that the Golgi has so many tasks has caused question marks about what kind of illnesses or diseases it can cause in case of a problem with Golgi. A mutation at Golgi can disrupt its function by cause of the Golgi fragmentation. It can be seized by living organisms or molecules, called infectious agents, outside the mutation. Disintegration and disorders in the Golgi structure and function are examples of neurodegenerative diseases and cancer. In addition, studies prove that the SARS-CoV-2 virus, which causes pandemic in the world, is also linked to the Golgi. The diseases that can be caused by the Golgi are highlighted in this review, as are treatment studies. Treatment strategies for the Golgi that causes many diseases are still developing and studies are ongoing.The primary function of the Golgi apparatus is to perform post-translational modifications on proteins, allowing them to be transported within the cell. The Golgi has more functions in the cell, according to research into its unknown structure and functions. It has been discovered that, in addition to substance processing and transport, it plays a role in autophagy, lipid formation, calcium homeostasis, and apoptosis regulation. The fact that Golgi has so many tasks has caused question marks about what kind of illnesses or diseases it can cause in case of a problem with Golgi. A mutation at Golgi can disrupt its function by causing Golgi fragmentation. It can be seized by living organisms or molecules, called infectious agents, outside the mutation. Disintegration and disorders in Golgi structure and function are examples of neurodegenerative diseases and cancer. In addition, studies prove that the SARS-CoV-2 virus, which causes pandemics in the world, is also linked to Golgi. The diseases that can be caused by Golgi are highlighted in this review, as are treatment studies. Treatment strategies for Golgi device that causes many diseases are still developing and studies are ongoing.

References

  • Ayala I, Colanzi A. Alterations of Golgi organization in Alzheimer’s disease: A cause or a consequence? Tissue Cell 2016; 49(2):133-140. DOI:10.1016/j.tice.2016.11.007.
  • Rabouille C, Haase G. Editorial: Golgi pathology in neurodegenerative diseases. Frontiers in Neuroscience 2016; 9:489. DOI:10.3389/fnins.2015.00489.
  • Zappa F, Failli M, De Matteis MA. The Golgi complex in disease and therapy. Current Opinion in Cell Biology 2018; 50:102–116. DOI: 10.1016/j.ceb.2018.03.005.
  • Sundaramoorthy V, Sultana JM, Atkin JD. Golgi fragmentation in amyotrophic lateral sclerosis, and overview of possible triggers and consequences. Frontiers in Neuroscience 2015; 9:400. DOI: 10.3389/fnins.2015.00400.
  • Li J, Ahat E, Wang Y. The golgi apparatus and centriole, results and problems in cell differentiation. Springere Nature Switzerland 2019; 67:442. DOI:10.1007/978-3-030-23173-6_19.
  • Rabouille C, Haase G. Golgi fragmentation in ALS motor neurons. New mechanism targeting microtubules, tethers, and transport vesicles. Frontier in Neuroscience 2015; 9:448.DOI:10.3389/fnins.2015.00448.
  • Makowski SL, Tran TTT, Field SJ. Emerging themes of regulation at the golgi. Current Opinion in Cell Biology 2017; 45:17–23. DOI: 10.1016/j.ceb.2017.01.004.
  • Wei JH, Seemann J. Golgi ribbon disassembly during mitosis, differentiation and disease progression. Current Opinion in Cell Biology 2017; 47:43–51. DOI:10.1016/j.ceb.2017.03.008.
  • Farhan H, Rabouille C. Signalling to and from the secretory pathway. J Cell Sci 2011; 124:171–180. DOI: 10.1242/ jcs.076455.
  • Sasaki K, Yoshida H. Organelle autoregulation-stress responses in the ER, golgi, mitochondria and lysosome. J Biochem 2015;157: 185–195. DOI:10.1093/jb/mvv010.
  • Sasaki K, Yoshida H. Golgi stress response and organelle zones. FEBS Letters 2019; 593: 2330–2340. DOI: 10.1002/1873-3468.13554.
  • Li J, Ahat E, Wang Y. Golgi structure and function in health, stress, and diseases. Springer Nature Switzerland AG 2019;67:463-464. DOI:10.1007/978-3-030-23173-6_19.
  • Farber-Katz SE, Dippold HC, Buschman MD, Peterman MC, Xing M, Noakes CJ, Tat J, Ng MM, Rahajeng J, Cowan DM, Fuchs GJ, Zhou H, Field SJ. DNA damage triggers golgi dispersal via DNA-PK and GOLPH3. Cell 2014; 156:413–427. DOI:10.1016/j.cell.2013.12.023.
  • Li T, You H, Mo X, He W, Tang X, Jiang Z, Chen S, Chen Y, Zhang J, Hu Z. GOLPH3 mediated golgi stress response in modulating N2A cell death upon oxygen-glucose deprivation and reoxygenation injury. Mol Neurobiol 2016; 53(2): 1377–1385. DOI:10.1007/s12035.014.9083-0.
  • Mancini M, Machamer CE, Roy S, Nicholson DW. Caspase2 is localized at the golgi complex and cleaves Golgin-160 during apoptosis. The Journal of Cell Biology 2000; 149(3): 603-612. DOI: 10.1083/jcb.149.3.603.
  • Ahat E, Li J, Wang Y. New insights into the golgi stacking proteins. Frontiers in Cell and Developmental Biology 2019;7:131. DOI: 10.3389/fcell.2019.00131.
  • Sun NK, Huang SL, Chien KY, Chao CC. Golgi-SNARE GS28 potentiates cisplatin-induced apoptosis by forming GS28-MDM2-p53 complexes and by preventing the ubiquitination and degradation of p53. Biochem J 2012; 444:303–314. DOI:10.1042/BJ20112223.
  • Eisenberg-Lerner A, Benyair R, Hizkiahou N, Nudel N, Maor R, Kramer MP, Shmueli MD, Zigdon I, Lev MC, Ulman A, Sagiv JY, Dayan M, Dassa B, Rosenwald M, Shachar I, Li J, Wang Y, Dezorella N, Khan S, Porat Z, Shimoni E, Avinoam O, Merbl Y. Golgi organization is regulated by proteasomal degradation. Nature Communications 2020; 11:409. DOI:10.1038/s41467.019.14038-9.
  • Taniguchi M, Yoshida H. TFE3, HSp47, and CREB3 pathways of mammalian golgi stress response. Current Opinion in Cell Biology 2017; 47:43–51. DOI: 10.1247/csf.16023.
  • Taniguchi M, Nadanaka S, Tanakura S, Sawaguchi S, Midori S, Kawai Y, Yamaguchi S, Shimada Y, Nakamura Y, Matsumura Y, Fujita N, Araki N, Yamamoto M, Oku M, Wakabayashi S, Kitagawa H, and Yoshida H. TFE3 is a bHLH-ZIP-type transcription factor that regulates the mammalian golgi stress response. Cell Struct Funct 2015; 40(1): 13–30. DOI:10.1247/csf.14015.
  • Passemard S, Perez F, Gressens P, El Ghouzzi V. Endoplasmic reticulum and golgi stress in microcephaly. Cell Stress 2019;3:12. DOI:10.15698/cst2019.12.206.
  • Reiling JH, Olive AJ, Sanyal S, Carette JE, Brummelkamp TR, Ploegh HL, Starnbach MN, Sabatini DM. A CREB3-ARF4 signalling pathway mediates the response to golgi stress and susceptibility to pathogens. Nat. Cell Biol. 2013; 15:1473–1485. DOI:10.1038/ncb2865.
  • Miyata S, Mizuno T, Koyama Y, Katayama T, Tohyama M. The endoplasmic reticulum-resident chaperon heat shock protein 47 protects the golgi apparatus from the effects of o-glycosylation inhibition. PLoS One 2013; 8(7):e69732. DOI:10.1371/journal.pone.0069732.
  • Nadanaka S, Kitagawa H. Heparan sulphate biosynthesis and disease. J Biochem 2008; 144:7–14. DOI: 10.1093/jb/mvn040.
  • Sechi S, Frappaolo A, Karimpour-Ghahnavieh A, Piergentili R, Giansanti MG. Oncogenic roles of GOLPH3 in the physiopathology of cancer. International Journal of Molecular Sciences 2020; 21:933. DOI: 10.3390/ijms21030933.
  • Kuna R.S., Field S.J. GOLPH3: a golgi phosphatidylinositol(4) phosphate effector that directs vesicle trafficking and drives cancer. Journal of Lipid Research. 2019; 60:269-275. DOI:10.1194/jlr.R088328.
  • Shao-Ming S., Yan J., Cheng Z., Shuang-Shu D., Shuo Y., Zhong X., Meng-Kai G., Yun Y., Li X., Meng G., Jin-Ke C., Jun-Ling L., Jian-Xiu Y., Guo-Qiang C. Nuclear PTEN safeguards pre-mRNA splicing to link golgi apparatus for its tumor-suppressive role. Nature Communıcatıons 2018; 9:2392. DOI: 10.1038/s41467.018.04760-1.
  • Gao P, Pan W, Li N, Tag B. Boosting cancer therapy with organelle-targeted nanomaterials. ACS Appl. Mater. Interfaces 2019; 11:26529−26558. DOI:10.1021/acsami.9b01370.
  • Nieto-Torres JL, De Diego ML, Alvarez E, Jimenez-Guardeno JM, Regla-Nava JA, Llorente M, et al. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology 2011; 415:69-82. DOI:10.1016/j.virol.2011.03.029.
  • De Maio F, Lo Cascio E, Babini G, Sali M, Della Longa S, Tilocca B, Roncada P, Arcovito A, Sanguinetti M, Scambia G, Urbani A. Improved binding of SARS-CoV-2 envelope protein to tight junctionassociated PALS1 could play a key role in COVID-19 pathogenesis. Microbes and Infection 2019; 22:1286-4579. DOI:10.1016/j.micinf.2020.08.006.
  • Belhaouari DB, Fontanini A, Baudoin JP, Haddad G, Le Bideau G, Khalil JYB, Raoult D, La Scola B. The strengths of scanning electron microscopy in deciphering SARS-CoV-2 infectious cycle. Frontiers in Microbiology 2020; 11:2014. DOI:10.3389/fmicb.2020.02014.
  • Emameh RZ, Nosrati H, Eftekhari M, Falak R, Khoshmirsafa M. Expansion of single cell transcriptomics data of SARS-CoV infection in human bronchial epithelial cells to COVID-19. Biological Procedures Online 2020; 22:16. DOI:10.1186/s12575.020.00127-3.
  • Joshi G, Bekier ME, Wang Y. Golgi fragmentation in Alzheimer’s disease. Frontiers in Neuroscience 2015; 9:340. DOI: 10.3389/fnins.2015.00340.
  • Ravichandran Y., Goud B., Manneville JB. The Golgi apparatus and cell polarity: Roles of the cytoskeleton, the golgi matrix, and golgi membranes. Current Opinion in Cell Biology 2020,62:104–113. DOI: 10.1016/j.ceb.2019.10.003.
  • Ohashi Y., Okamura M., Katayama R., Fang S., Tsutsui S., Akatsuka A., Shan M., Choi H.W., Fujita N., Yoshimatsu K., ShiinaI., Yamori T., Dan S. Targeting the golgi apparatus to overcome acquired resistance of non-small cell lung cancer cells to EGFR tyrosine kinase inhibitors. Oncotarget 2018; 9(2):1641-1655. DOI:10.18632/oncotarget.22895.
Year 2024, Volume: 14 Issue: 1, 264 - 272, 28.03.2024
https://doi.org/10.33808/clinexphealthsci.1148777

Abstract

References

  • Ayala I, Colanzi A. Alterations of Golgi organization in Alzheimer’s disease: A cause or a consequence? Tissue Cell 2016; 49(2):133-140. DOI:10.1016/j.tice.2016.11.007.
  • Rabouille C, Haase G. Editorial: Golgi pathology in neurodegenerative diseases. Frontiers in Neuroscience 2016; 9:489. DOI:10.3389/fnins.2015.00489.
  • Zappa F, Failli M, De Matteis MA. The Golgi complex in disease and therapy. Current Opinion in Cell Biology 2018; 50:102–116. DOI: 10.1016/j.ceb.2018.03.005.
  • Sundaramoorthy V, Sultana JM, Atkin JD. Golgi fragmentation in amyotrophic lateral sclerosis, and overview of possible triggers and consequences. Frontiers in Neuroscience 2015; 9:400. DOI: 10.3389/fnins.2015.00400.
  • Li J, Ahat E, Wang Y. The golgi apparatus and centriole, results and problems in cell differentiation. Springere Nature Switzerland 2019; 67:442. DOI:10.1007/978-3-030-23173-6_19.
  • Rabouille C, Haase G. Golgi fragmentation in ALS motor neurons. New mechanism targeting microtubules, tethers, and transport vesicles. Frontier in Neuroscience 2015; 9:448.DOI:10.3389/fnins.2015.00448.
  • Makowski SL, Tran TTT, Field SJ. Emerging themes of regulation at the golgi. Current Opinion in Cell Biology 2017; 45:17–23. DOI: 10.1016/j.ceb.2017.01.004.
  • Wei JH, Seemann J. Golgi ribbon disassembly during mitosis, differentiation and disease progression. Current Opinion in Cell Biology 2017; 47:43–51. DOI:10.1016/j.ceb.2017.03.008.
  • Farhan H, Rabouille C. Signalling to and from the secretory pathway. J Cell Sci 2011; 124:171–180. DOI: 10.1242/ jcs.076455.
  • Sasaki K, Yoshida H. Organelle autoregulation-stress responses in the ER, golgi, mitochondria and lysosome. J Biochem 2015;157: 185–195. DOI:10.1093/jb/mvv010.
  • Sasaki K, Yoshida H. Golgi stress response and organelle zones. FEBS Letters 2019; 593: 2330–2340. DOI: 10.1002/1873-3468.13554.
  • Li J, Ahat E, Wang Y. Golgi structure and function in health, stress, and diseases. Springer Nature Switzerland AG 2019;67:463-464. DOI:10.1007/978-3-030-23173-6_19.
  • Farber-Katz SE, Dippold HC, Buschman MD, Peterman MC, Xing M, Noakes CJ, Tat J, Ng MM, Rahajeng J, Cowan DM, Fuchs GJ, Zhou H, Field SJ. DNA damage triggers golgi dispersal via DNA-PK and GOLPH3. Cell 2014; 156:413–427. DOI:10.1016/j.cell.2013.12.023.
  • Li T, You H, Mo X, He W, Tang X, Jiang Z, Chen S, Chen Y, Zhang J, Hu Z. GOLPH3 mediated golgi stress response in modulating N2A cell death upon oxygen-glucose deprivation and reoxygenation injury. Mol Neurobiol 2016; 53(2): 1377–1385. DOI:10.1007/s12035.014.9083-0.
  • Mancini M, Machamer CE, Roy S, Nicholson DW. Caspase2 is localized at the golgi complex and cleaves Golgin-160 during apoptosis. The Journal of Cell Biology 2000; 149(3): 603-612. DOI: 10.1083/jcb.149.3.603.
  • Ahat E, Li J, Wang Y. New insights into the golgi stacking proteins. Frontiers in Cell and Developmental Biology 2019;7:131. DOI: 10.3389/fcell.2019.00131.
  • Sun NK, Huang SL, Chien KY, Chao CC. Golgi-SNARE GS28 potentiates cisplatin-induced apoptosis by forming GS28-MDM2-p53 complexes and by preventing the ubiquitination and degradation of p53. Biochem J 2012; 444:303–314. DOI:10.1042/BJ20112223.
  • Eisenberg-Lerner A, Benyair R, Hizkiahou N, Nudel N, Maor R, Kramer MP, Shmueli MD, Zigdon I, Lev MC, Ulman A, Sagiv JY, Dayan M, Dassa B, Rosenwald M, Shachar I, Li J, Wang Y, Dezorella N, Khan S, Porat Z, Shimoni E, Avinoam O, Merbl Y. Golgi organization is regulated by proteasomal degradation. Nature Communications 2020; 11:409. DOI:10.1038/s41467.019.14038-9.
  • Taniguchi M, Yoshida H. TFE3, HSp47, and CREB3 pathways of mammalian golgi stress response. Current Opinion in Cell Biology 2017; 47:43–51. DOI: 10.1247/csf.16023.
  • Taniguchi M, Nadanaka S, Tanakura S, Sawaguchi S, Midori S, Kawai Y, Yamaguchi S, Shimada Y, Nakamura Y, Matsumura Y, Fujita N, Araki N, Yamamoto M, Oku M, Wakabayashi S, Kitagawa H, and Yoshida H. TFE3 is a bHLH-ZIP-type transcription factor that regulates the mammalian golgi stress response. Cell Struct Funct 2015; 40(1): 13–30. DOI:10.1247/csf.14015.
  • Passemard S, Perez F, Gressens P, El Ghouzzi V. Endoplasmic reticulum and golgi stress in microcephaly. Cell Stress 2019;3:12. DOI:10.15698/cst2019.12.206.
  • Reiling JH, Olive AJ, Sanyal S, Carette JE, Brummelkamp TR, Ploegh HL, Starnbach MN, Sabatini DM. A CREB3-ARF4 signalling pathway mediates the response to golgi stress and susceptibility to pathogens. Nat. Cell Biol. 2013; 15:1473–1485. DOI:10.1038/ncb2865.
  • Miyata S, Mizuno T, Koyama Y, Katayama T, Tohyama M. The endoplasmic reticulum-resident chaperon heat shock protein 47 protects the golgi apparatus from the effects of o-glycosylation inhibition. PLoS One 2013; 8(7):e69732. DOI:10.1371/journal.pone.0069732.
  • Nadanaka S, Kitagawa H. Heparan sulphate biosynthesis and disease. J Biochem 2008; 144:7–14. DOI: 10.1093/jb/mvn040.
  • Sechi S, Frappaolo A, Karimpour-Ghahnavieh A, Piergentili R, Giansanti MG. Oncogenic roles of GOLPH3 in the physiopathology of cancer. International Journal of Molecular Sciences 2020; 21:933. DOI: 10.3390/ijms21030933.
  • Kuna R.S., Field S.J. GOLPH3: a golgi phosphatidylinositol(4) phosphate effector that directs vesicle trafficking and drives cancer. Journal of Lipid Research. 2019; 60:269-275. DOI:10.1194/jlr.R088328.
  • Shao-Ming S., Yan J., Cheng Z., Shuang-Shu D., Shuo Y., Zhong X., Meng-Kai G., Yun Y., Li X., Meng G., Jin-Ke C., Jun-Ling L., Jian-Xiu Y., Guo-Qiang C. Nuclear PTEN safeguards pre-mRNA splicing to link golgi apparatus for its tumor-suppressive role. Nature Communıcatıons 2018; 9:2392. DOI: 10.1038/s41467.018.04760-1.
  • Gao P, Pan W, Li N, Tag B. Boosting cancer therapy with organelle-targeted nanomaterials. ACS Appl. Mater. Interfaces 2019; 11:26529−26558. DOI:10.1021/acsami.9b01370.
  • Nieto-Torres JL, De Diego ML, Alvarez E, Jimenez-Guardeno JM, Regla-Nava JA, Llorente M, et al. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology 2011; 415:69-82. DOI:10.1016/j.virol.2011.03.029.
  • De Maio F, Lo Cascio E, Babini G, Sali M, Della Longa S, Tilocca B, Roncada P, Arcovito A, Sanguinetti M, Scambia G, Urbani A. Improved binding of SARS-CoV-2 envelope protein to tight junctionassociated PALS1 could play a key role in COVID-19 pathogenesis. Microbes and Infection 2019; 22:1286-4579. DOI:10.1016/j.micinf.2020.08.006.
  • Belhaouari DB, Fontanini A, Baudoin JP, Haddad G, Le Bideau G, Khalil JYB, Raoult D, La Scola B. The strengths of scanning electron microscopy in deciphering SARS-CoV-2 infectious cycle. Frontiers in Microbiology 2020; 11:2014. DOI:10.3389/fmicb.2020.02014.
  • Emameh RZ, Nosrati H, Eftekhari M, Falak R, Khoshmirsafa M. Expansion of single cell transcriptomics data of SARS-CoV infection in human bronchial epithelial cells to COVID-19. Biological Procedures Online 2020; 22:16. DOI:10.1186/s12575.020.00127-3.
  • Joshi G, Bekier ME, Wang Y. Golgi fragmentation in Alzheimer’s disease. Frontiers in Neuroscience 2015; 9:340. DOI: 10.3389/fnins.2015.00340.
  • Ravichandran Y., Goud B., Manneville JB. The Golgi apparatus and cell polarity: Roles of the cytoskeleton, the golgi matrix, and golgi membranes. Current Opinion in Cell Biology 2020,62:104–113. DOI: 10.1016/j.ceb.2019.10.003.
  • Ohashi Y., Okamura M., Katayama R., Fang S., Tsutsui S., Akatsuka A., Shan M., Choi H.W., Fujita N., Yoshimatsu K., ShiinaI., Yamori T., Dan S. Targeting the golgi apparatus to overcome acquired resistance of non-small cell lung cancer cells to EGFR tyrosine kinase inhibitors. Oncotarget 2018; 9(2):1641-1655. DOI:10.18632/oncotarget.22895.
There are 35 citations in total.

Details

Primary Language English
Subjects Cancer Cell Biology
Journal Section Review
Authors

Hilal Salcın 0000-0002-9172-480X

Burçin Tezcanlı Kaymaz 0000-0003-1832-1454

Early Pub Date March 23, 2024
Publication Date March 28, 2024
Submission Date July 26, 2022
Published in Issue Year 2024 Volume: 14 Issue: 1

Cite

APA Salcın, H., & Tezcanlı Kaymaz, B. (2024). The Roles of the Golgi in Various Diseases. Clinical and Experimental Health Sciences, 14(1), 264-272. https://doi.org/10.33808/clinexphealthsci.1148777
AMA Salcın H, Tezcanlı Kaymaz B. The Roles of the Golgi in Various Diseases. Clinical and Experimental Health Sciences. March 2024;14(1):264-272. doi:10.33808/clinexphealthsci.1148777
Chicago Salcın, Hilal, and Burçin Tezcanlı Kaymaz. “The Roles of the Golgi in Various Diseases”. Clinical and Experimental Health Sciences 14, no. 1 (March 2024): 264-72. https://doi.org/10.33808/clinexphealthsci.1148777.
EndNote Salcın H, Tezcanlı Kaymaz B (March 1, 2024) The Roles of the Golgi in Various Diseases. Clinical and Experimental Health Sciences 14 1 264–272.
IEEE H. Salcın and B. Tezcanlı Kaymaz, “The Roles of the Golgi in Various Diseases”, Clinical and Experimental Health Sciences, vol. 14, no. 1, pp. 264–272, 2024, doi: 10.33808/clinexphealthsci.1148777.
ISNAD Salcın, Hilal - Tezcanlı Kaymaz, Burçin. “The Roles of the Golgi in Various Diseases”. Clinical and Experimental Health Sciences 14/1 (March 2024), 264-272. https://doi.org/10.33808/clinexphealthsci.1148777.
JAMA Salcın H, Tezcanlı Kaymaz B. The Roles of the Golgi in Various Diseases. Clinical and Experimental Health Sciences. 2024;14:264–272.
MLA Salcın, Hilal and Burçin Tezcanlı Kaymaz. “The Roles of the Golgi in Various Diseases”. Clinical and Experimental Health Sciences, vol. 14, no. 1, 2024, pp. 264-72, doi:10.33808/clinexphealthsci.1148777.
Vancouver Salcın H, Tezcanlı Kaymaz B. The Roles of the Golgi in Various Diseases. Clinical and Experimental Health Sciences. 2024;14(1):264-72.

14639   14640