Research Article
BibTex RIS Cite

The Association Between Obesity, Mediterranean Diet Adherence, Zinc, Depression and COVID-19 Susceptibility: An observational Study

Year 2024, Volume: 14 Issue: 2, 357 - 366, 28.06.2024
https://doi.org/10.33808/clinexphealthsci.1296033

Abstract

Objective: Unhealthy lifestyle factors have been associated with COVID-19 susceptibility, but data for diet and related lifestyle factors are conflicting. The objective of this study was to identify whether obesity, Mediterranean diet, Zn or depression could be associated to the risk of COVID-19 occurrence.
Methods: This observational case-control study was conducted in Türkiye (between December 2020- September 2021) with face-to-face interview. A total of 100 former COVID-19 subjects as case group and 100 healthy control group, aged 20-54 were included in the study. By semi-structured questionnaire; demographic characteristics and anthropometric measurements was collected. Adherence to the Mediterranean diet was assessed using the Mediterranean Diet Adherence Screener and Mediterranean Diet Score. Daily dietary zinc intake was calculated using a 25-item food frequency questionnaire and blood samples for zinc levels was obtained from each participant. The level of depression was evaluated by Center for Epidemiologic Studies Depression Scale.
Results: No differences were found between the anthropometric characteristics of two groups (p.05). Average adherence to the Mediterranean diet were lower in the case groups compared to controls (p<.05). While the total zinc intake showed a significant difference between the groups (12.6±13.0 vs 12.8±7.2 mg, respectively, p=.003), no difference was observed in the food sources related to zinc intake (9.4±5.71 vs 10.1±9.45 mg, p=.052). Case group had significantly lower zinc levels (64.717.6 μg/dL vs 76.116.7 μg/dL, p0001) in both genders (for male p=.009 and female p.001, respectively). The majority of case group subjects (76.1 vs 23.8%) had a serum zinc concentration below the reference ranges (p<.001).
Conclusion: Our findings suggest a negative relationship between Mediterranean diet adherence or serum zinc levels, and COVID-19 occurrence, however further studies are required to examine whether Mediterranean diet consumption or serum zinc status reduces the risk of COVID-19 causally.

References

  • World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Geneva: World Health Organization; 2020 [cited 2020 August 30]. Available from: https://covid19.who.int
  • Chu IYH, Alam P, Larson HJ, Lin L. Social consequences of mass quarantine during epidemics: a systematic review with implications for the COVID-19 response. J Travel Med. 2020;27(7): taaa192. DOI: 10.1093/jtm/taaa192
  • Wilder-Smith A, Freedman DO. Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J Travel Med 2020;27:taaa020. DOI: 10.1093/jtm/taaa020
  • Torales J, O’Higgins M, Castaldelli-Maia JM, Ventriglio A. The outbreak of COVID-19 coronavirus and its impact on global mental health. Int J Soc Psychiatry. 2020;66(4):317-320. DOI: 10.1177/0020764020915212
  • Hamer M, Kivimäki M, Gale CR, Batty GD. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain Behav Immun. 2020;87:184-187. DOI: 10.1016/j.bbi.2020.05.059
  • Li S, Hua X. Modifiable lifestyle factors and severe COVID-19 risk: A Mendelian randomisation study. BMC Medical Genom. 2021;14(1):1-8. DOI:10.1186/s12920-021-00887-1
  • Robinson E, Boyland E, Chisholm A, Harrold J, Maloney NG, Marty L, Hardman CA. Obesity, eating behavior and physical activity during COVID-19 lockdown: A study of UK adults. Appetite. 2021:156;104853. DOI: 10.1016/j.appet.2020.104853
  • Heinberg LJ, Steffen K. Social Isolation and Loneliness During the COVID-19 Pandemic: Impact on Weight. Curr Obes Rep. 2021;10(3):365-370. DOI: 10.1007/s13679-021-00447-9
  • Phillipou A, Meyer D, Neill E, Tan EJ, Toh WL, Van Rheenen TE, Rossell SL. Eating and exercise behaviors in eating disorders and the general population during the COVID‐19 pandemic in Australia: Initial results from the COLLATE project. International Journal of Eating Disorders. 2020; 53(7):1158-1165. DOI: 10.1002/eat.23317
  • Wang SD, Devjani S, Dunton GF, Mason TB. Effects of COVID-19 pandemic stress on dysregulated eating and feeding behaviors and body mass index in Los Angeles mothers. Appetite 2020;163:105209. DOI: 10.1016/j.appet.2021.105209
  • Merino J, Joshi AD, Nguyen LH, Leeming ER, Mazidi M, Drew DA. Diet quality and risk and severity of COVID-19: A prospective cohort study. Gut. 2021; 70(11):2096-2104. DOI: 10.1136/gutjnl-2021-325353.
  • De Frel DL, Atsm DE, Pijl H, Seidell JC, Leenen PJ, Dik WA. The impact of obesity and lifestyle on the immune system and susceptibility to infections such as COVID-19. Front Nutr. 2020; 279. DOI: 10.3389/fnut.2020.597600
  • Wessels I, Rolles B, Slusarenko AJ, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr, 2022;127(2):214-232. DOI:10.1017/S0007114521000738
  • Wessels I, Rolles B, Rink L. The potential impact of zinc supplementation on COVID-19 pathogenesis. Front Immunol. 2020; 11: 1712. DOI: 10.3389/fimmu.2020.01712
  • Skalny AV, Rink L, Ajsuvakova OP, Zinc and respiratory tract infections: perspectives for COVID19 (Review). Int J Mol Med. 2020; 46(1): 17- 26. DOI: 10.3892/ijmm.2020.4575
  • Rahman MT, Idid SZ. Can Zn be a critical element in COVID-19 treatment? Biol Trace Elem Res. 2021; 199: 550- 558.DOI:10.1007/s12011-020-02194-9
  • Lange KW, Nakamura Y. Lifestyle factors in the prevention of COVID-19. Global Health Journal 2020; 4(4): 146-152. DOI: 10.1016/j.glohj.2020.11.002
  • Trame, S., Wessels, I., Haase, H., Rink, L. A short 18 items food frequency questionnaire biochemically validated to estimate zinc status in humans. Journal of Trace Elements in Medicine and Biology 2018;49:285-295. DOI:10.1016/j.jtemb.2018.02.020
  • Schröder H, Fitó M, Estruch R, Martínez‐González MA, Corella D, Salas‐Salvadó J, Covas MI. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J Nutr. 2011; 141(6):1140-1145. DOI:10.3945/jn.110.135566
  • Pehlivanoğlu EFÖ. Balcıoğlu H, Ünlüoğlu İ. Akdeniz Diyeti Bağlılık Ölçeği’nin Türkçe’ye Uyarlanması Geçerlilik ve Güvenilirliği. Osmangazi Tıp Dergisi 2018;42(2):160-164. DOI:10.3945/jn.110.135566
  • Panagiotakos DB, Pitsavos C, Stefanadis C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr Metab Cardiovasc Dis. 2006; 16(8):559-568. DOI:10.1016/j.numecd.2005.08.006
  • Panagiotakos DB, Chrysohoou C, Pitsavos C, Stefanadis C. Association between the prevalence of obesity and adherence to the Mediterranean diet: The ATTICA study. Nutr. 2006; 22(5):449-456. DOI:10.1016/j.nut.2005.11.004
  • Sheehan TJ, Fifield J, Reisine S, Tennen H. The measurement structure of the Center for Epidemiologic Studies Depression Scale. J Pers Assess. 1995;64(3):507-521. DOI:10.1207/s153227752jpa6403_9
  • Tatar A, Saltukoglu G. The adaptation of the CES-Depression Scale into Turkish through the use of confirmatory factor analysis and item response theory and the examination of psychometric characteristics. Bulletin of Clinical Psychopharmacology 2010;20(3): 213-227. DOI: 10.1080/10177833.2010.11790662
  • Zhu X, Yang L, Huang K. COVID-19 and obesity: Epidemiology, pathogenesis and treatment. Diabetes Metab Syndr Obes: Targets Ther. 2020;13:4953. DOI: 10.2147/DMSO.S285197
  • Soeroto AY, Soetedjo NN, Purwiga A, Santoso P, Kulsum ID, Suryadinata H, Ferdian F. Effect of increased BMI and obesity on the outcome of COVID-19 adult patients: A systematic review and meta-analysis. Diabetes Metab. Syndr. Clin Res Rev. 2020;14(6):1897-1904. DOI: 10.1016/j.dsx.2020.09.029
  • Pranata R, Lim MA, Yonas E, Vania R, Lukito AA, Siswanto BB, Meyer M. Body mass index and outcome in patients with COVID-19: A dose–response meta-analysis. Diabetes Metab. 2021;47(2):101178. DOI: 10.1016/j.diabet.2020.07.005
  • Fedele D, De Francesco A, Riso S, Collo A. Obesity, malnutrition, and trace element deficiency in the coronavirus disease (COVID-19) pandemic: An overview. Nutr. 2021;81:111016. DOI: 10.1016/j.nut.2020.111016
  • Freuer D, Linseisen J, Meisinger C. Impact of body composition on COVID-19 susceptibility and severity: A two-sample multivariable Mendelian randomization study. Metabolism 2021;118:154732. DOI:10.1016/j.metabol.2021.154732
  • Malavazos AE, Secchi F, Basilico S, Capitanio G, Boveri S, Milani V, Locobellis B. Abdominal obesity phenotype is associated with COVID-19 chest X-ray severity score better than BMI-based obesity. Eat Weight Disord-Studies on Anorexia, Bulimia and Obesity 2021:1-15. DOI:10.1007/s40519-021-01173-w
  • Stefan N, Birkenfeld AL, Schulze MB, Ludwig DS. Obesity and impaired metabolic health in patients with COVID-19. Nat Rev Endocrinol. 2020;16(7):341-342. DOI:10.1038/s41574-020-0364-6
  • Watanabe M, Balena A, Tuccinardi D, Tozzi R, Risi R, Masi D, Gnessi L. Central obesity, smoking habit, and hypertension are associated with lower antibody titres in response to COVID‐19 mRNA vaccine. Diabetes Metab Res Rev. 2022;38(1):e3465. DOI:10.1002/dmrr.3465
  • Petersen, A, Bressem K, Albrecht J, Thieß HM, Vahldiek J, Hamm B,Adams LC. The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany. Metabolism. 2020;110, 154317. DOI: 10.1016/j.metabol.2020.154317
  • Di Filippo L, De Lorenzo R, D'Amico M, Sofia V, Roveri L, Mele R, Conte C. COVID-19 is associated with clinically significant weight loss and risk of malnutrition, independent of hospitalisation: A post-hoc analysis of a prospective cohort study. Clin Nutr. 2021;40(4):2420-2426. DOI:10.1016/j.clnu.2020.10.043
  • Hodge JM, Shah R, McCullough ML, Gapstur SM,Patel AV. Validation of self-reported height and weight in a large, nationwide cohort of US adults. PloS One. 2020;15(4):e0231229. DOI:10.1371/journal.pone.0231229
  • Anker MS, Landmesser U, von Haehling S, Butler J, Coats AJ, Anker SD. Weight loss, malnutrition, and cachexia in COVID‐19: facts and numbers. J. Cachexia Sarcopenia Muscle 2021;12(1):9-13. DOI: 10.1002/jcsm.12674
  • Liu A, Cong J, Wang Q, Mei Y, Peng Y, Zhou M, et al. Risk of malnutrition is common in patients with Coronavirus Disease 2019 (COVID-19) in Wuhan, China: A Cross-sectional Study. J Nutr. 2021;151(6):1591-1596. DOI:10.1093/jn/nxab009
  • Burges Watson DL, Campbell M, Hopkins, C., Smith, B, Kelly C, Deary V. Altered smell and taste: Anosmia, parosmia and the impact of long COVID-19. PLoS One. 2021;16(9):e0256998. DOI:10.1371/journal.pone.0256998
  • Elham AS, Azam K, Azam J, Mostafa L, Nasrin B, Marzieh, N. Serum vitamin D, calcium, and zinc levels in patients with COVID-19. Clin Nutr ESPEN. 2021;43:276-282. DOI: 10.1016/j.clnesp.2021.03.040
  • El Khoury CN, Julien, SG. Inverse Association Between the Mediterranean Diet and COVID-19 Risk in Lebanon: A case-control study. Front Nutr. 2021;467. DOI:10.3389/fnut.2021.707359
  • Greene MW, Roberts AP, Frugé, AD. Negative association between Mediterranean diet adherence and COVID-19 cases and related deaths in Spain and 25 OECD countries: An ecological study. Front in Nutr. 2021;8:74. DOI:10.3389/fnut.2021.591964
  • Perez-Araluce R, Martinez-Gonzalez MA, Fernández-Lázaro CI., Bes-Rastrollo M, Gea A, Carlos S. Mediterranean diet and the risk of COVID-19 in the ‘Seguimiento Universidad de Navarra’cohort. Clin Nutr. 2021. DOI: 10.1016/j.clnu.2021.04.001
  • Pal A, Squitti R, Picozza M, Pawar A, Rongioletti M, Dutta AK. Zinc and COVID-19: basis of current clinical trials. Biol Trace Elem Res. 2021;199(8): 2882-2892. DOI:10.1007/s12011-020-02437-9
  • Joachimiak MP. Zinc against COVID-19? Symptom surveillance and deficiency risk groups. PLOS Negl Trop Dis. 2021;15(1);e0008895. DOI:10.1371/journal.pntd.0008895
  • Razeghi JS, Moradi TH, Togha M, Ariyanfar, S, Ghorbani Z, Naeeni S, Jafari E. The correlation between serum selenium, zinc, and COVID-19 severity: An observational study. BMC Infect Dis. 2021;21(1):1-9. DOI:10.1186/s12879-021-06617-3
  • Jothimani D, Kailasam E, Danielraj S, Nallathambi B, Ramachandran H, Sekar, P. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis. 2020;100:343-349. DOI:10.1016/j.ijid.2020.09.014
  • Khurana AK, Karna ST, Hussain A. Zinc and coronavirus disease 2019: causal or casual association? Chest, 2021;159(1):449-450. DOI:10.1016/j.chest.2020.08.2092
  • Doğan M. Zinc Deficiency and Excess. Klinik Tıp Pediatri Dergisi, 2020;12(1):13-19 (Turkish).
Year 2024, Volume: 14 Issue: 2, 357 - 366, 28.06.2024
https://doi.org/10.33808/clinexphealthsci.1296033

Abstract

References

  • World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Geneva: World Health Organization; 2020 [cited 2020 August 30]. Available from: https://covid19.who.int
  • Chu IYH, Alam P, Larson HJ, Lin L. Social consequences of mass quarantine during epidemics: a systematic review with implications for the COVID-19 response. J Travel Med. 2020;27(7): taaa192. DOI: 10.1093/jtm/taaa192
  • Wilder-Smith A, Freedman DO. Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J Travel Med 2020;27:taaa020. DOI: 10.1093/jtm/taaa020
  • Torales J, O’Higgins M, Castaldelli-Maia JM, Ventriglio A. The outbreak of COVID-19 coronavirus and its impact on global mental health. Int J Soc Psychiatry. 2020;66(4):317-320. DOI: 10.1177/0020764020915212
  • Hamer M, Kivimäki M, Gale CR, Batty GD. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain Behav Immun. 2020;87:184-187. DOI: 10.1016/j.bbi.2020.05.059
  • Li S, Hua X. Modifiable lifestyle factors and severe COVID-19 risk: A Mendelian randomisation study. BMC Medical Genom. 2021;14(1):1-8. DOI:10.1186/s12920-021-00887-1
  • Robinson E, Boyland E, Chisholm A, Harrold J, Maloney NG, Marty L, Hardman CA. Obesity, eating behavior and physical activity during COVID-19 lockdown: A study of UK adults. Appetite. 2021:156;104853. DOI: 10.1016/j.appet.2020.104853
  • Heinberg LJ, Steffen K. Social Isolation and Loneliness During the COVID-19 Pandemic: Impact on Weight. Curr Obes Rep. 2021;10(3):365-370. DOI: 10.1007/s13679-021-00447-9
  • Phillipou A, Meyer D, Neill E, Tan EJ, Toh WL, Van Rheenen TE, Rossell SL. Eating and exercise behaviors in eating disorders and the general population during the COVID‐19 pandemic in Australia: Initial results from the COLLATE project. International Journal of Eating Disorders. 2020; 53(7):1158-1165. DOI: 10.1002/eat.23317
  • Wang SD, Devjani S, Dunton GF, Mason TB. Effects of COVID-19 pandemic stress on dysregulated eating and feeding behaviors and body mass index in Los Angeles mothers. Appetite 2020;163:105209. DOI: 10.1016/j.appet.2021.105209
  • Merino J, Joshi AD, Nguyen LH, Leeming ER, Mazidi M, Drew DA. Diet quality and risk and severity of COVID-19: A prospective cohort study. Gut. 2021; 70(11):2096-2104. DOI: 10.1136/gutjnl-2021-325353.
  • De Frel DL, Atsm DE, Pijl H, Seidell JC, Leenen PJ, Dik WA. The impact of obesity and lifestyle on the immune system and susceptibility to infections such as COVID-19. Front Nutr. 2020; 279. DOI: 10.3389/fnut.2020.597600
  • Wessels I, Rolles B, Slusarenko AJ, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr, 2022;127(2):214-232. DOI:10.1017/S0007114521000738
  • Wessels I, Rolles B, Rink L. The potential impact of zinc supplementation on COVID-19 pathogenesis. Front Immunol. 2020; 11: 1712. DOI: 10.3389/fimmu.2020.01712
  • Skalny AV, Rink L, Ajsuvakova OP, Zinc and respiratory tract infections: perspectives for COVID19 (Review). Int J Mol Med. 2020; 46(1): 17- 26. DOI: 10.3892/ijmm.2020.4575
  • Rahman MT, Idid SZ. Can Zn be a critical element in COVID-19 treatment? Biol Trace Elem Res. 2021; 199: 550- 558.DOI:10.1007/s12011-020-02194-9
  • Lange KW, Nakamura Y. Lifestyle factors in the prevention of COVID-19. Global Health Journal 2020; 4(4): 146-152. DOI: 10.1016/j.glohj.2020.11.002
  • Trame, S., Wessels, I., Haase, H., Rink, L. A short 18 items food frequency questionnaire biochemically validated to estimate zinc status in humans. Journal of Trace Elements in Medicine and Biology 2018;49:285-295. DOI:10.1016/j.jtemb.2018.02.020
  • Schröder H, Fitó M, Estruch R, Martínez‐González MA, Corella D, Salas‐Salvadó J, Covas MI. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J Nutr. 2011; 141(6):1140-1145. DOI:10.3945/jn.110.135566
  • Pehlivanoğlu EFÖ. Balcıoğlu H, Ünlüoğlu İ. Akdeniz Diyeti Bağlılık Ölçeği’nin Türkçe’ye Uyarlanması Geçerlilik ve Güvenilirliği. Osmangazi Tıp Dergisi 2018;42(2):160-164. DOI:10.3945/jn.110.135566
  • Panagiotakos DB, Pitsavos C, Stefanadis C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr Metab Cardiovasc Dis. 2006; 16(8):559-568. DOI:10.1016/j.numecd.2005.08.006
  • Panagiotakos DB, Chrysohoou C, Pitsavos C, Stefanadis C. Association between the prevalence of obesity and adherence to the Mediterranean diet: The ATTICA study. Nutr. 2006; 22(5):449-456. DOI:10.1016/j.nut.2005.11.004
  • Sheehan TJ, Fifield J, Reisine S, Tennen H. The measurement structure of the Center for Epidemiologic Studies Depression Scale. J Pers Assess. 1995;64(3):507-521. DOI:10.1207/s153227752jpa6403_9
  • Tatar A, Saltukoglu G. The adaptation of the CES-Depression Scale into Turkish through the use of confirmatory factor analysis and item response theory and the examination of psychometric characteristics. Bulletin of Clinical Psychopharmacology 2010;20(3): 213-227. DOI: 10.1080/10177833.2010.11790662
  • Zhu X, Yang L, Huang K. COVID-19 and obesity: Epidemiology, pathogenesis and treatment. Diabetes Metab Syndr Obes: Targets Ther. 2020;13:4953. DOI: 10.2147/DMSO.S285197
  • Soeroto AY, Soetedjo NN, Purwiga A, Santoso P, Kulsum ID, Suryadinata H, Ferdian F. Effect of increased BMI and obesity on the outcome of COVID-19 adult patients: A systematic review and meta-analysis. Diabetes Metab. Syndr. Clin Res Rev. 2020;14(6):1897-1904. DOI: 10.1016/j.dsx.2020.09.029
  • Pranata R, Lim MA, Yonas E, Vania R, Lukito AA, Siswanto BB, Meyer M. Body mass index and outcome in patients with COVID-19: A dose–response meta-analysis. Diabetes Metab. 2021;47(2):101178. DOI: 10.1016/j.diabet.2020.07.005
  • Fedele D, De Francesco A, Riso S, Collo A. Obesity, malnutrition, and trace element deficiency in the coronavirus disease (COVID-19) pandemic: An overview. Nutr. 2021;81:111016. DOI: 10.1016/j.nut.2020.111016
  • Freuer D, Linseisen J, Meisinger C. Impact of body composition on COVID-19 susceptibility and severity: A two-sample multivariable Mendelian randomization study. Metabolism 2021;118:154732. DOI:10.1016/j.metabol.2021.154732
  • Malavazos AE, Secchi F, Basilico S, Capitanio G, Boveri S, Milani V, Locobellis B. Abdominal obesity phenotype is associated with COVID-19 chest X-ray severity score better than BMI-based obesity. Eat Weight Disord-Studies on Anorexia, Bulimia and Obesity 2021:1-15. DOI:10.1007/s40519-021-01173-w
  • Stefan N, Birkenfeld AL, Schulze MB, Ludwig DS. Obesity and impaired metabolic health in patients with COVID-19. Nat Rev Endocrinol. 2020;16(7):341-342. DOI:10.1038/s41574-020-0364-6
  • Watanabe M, Balena A, Tuccinardi D, Tozzi R, Risi R, Masi D, Gnessi L. Central obesity, smoking habit, and hypertension are associated with lower antibody titres in response to COVID‐19 mRNA vaccine. Diabetes Metab Res Rev. 2022;38(1):e3465. DOI:10.1002/dmrr.3465
  • Petersen, A, Bressem K, Albrecht J, Thieß HM, Vahldiek J, Hamm B,Adams LC. The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany. Metabolism. 2020;110, 154317. DOI: 10.1016/j.metabol.2020.154317
  • Di Filippo L, De Lorenzo R, D'Amico M, Sofia V, Roveri L, Mele R, Conte C. COVID-19 is associated with clinically significant weight loss and risk of malnutrition, independent of hospitalisation: A post-hoc analysis of a prospective cohort study. Clin Nutr. 2021;40(4):2420-2426. DOI:10.1016/j.clnu.2020.10.043
  • Hodge JM, Shah R, McCullough ML, Gapstur SM,Patel AV. Validation of self-reported height and weight in a large, nationwide cohort of US adults. PloS One. 2020;15(4):e0231229. DOI:10.1371/journal.pone.0231229
  • Anker MS, Landmesser U, von Haehling S, Butler J, Coats AJ, Anker SD. Weight loss, malnutrition, and cachexia in COVID‐19: facts and numbers. J. Cachexia Sarcopenia Muscle 2021;12(1):9-13. DOI: 10.1002/jcsm.12674
  • Liu A, Cong J, Wang Q, Mei Y, Peng Y, Zhou M, et al. Risk of malnutrition is common in patients with Coronavirus Disease 2019 (COVID-19) in Wuhan, China: A Cross-sectional Study. J Nutr. 2021;151(6):1591-1596. DOI:10.1093/jn/nxab009
  • Burges Watson DL, Campbell M, Hopkins, C., Smith, B, Kelly C, Deary V. Altered smell and taste: Anosmia, parosmia and the impact of long COVID-19. PLoS One. 2021;16(9):e0256998. DOI:10.1371/journal.pone.0256998
  • Elham AS, Azam K, Azam J, Mostafa L, Nasrin B, Marzieh, N. Serum vitamin D, calcium, and zinc levels in patients with COVID-19. Clin Nutr ESPEN. 2021;43:276-282. DOI: 10.1016/j.clnesp.2021.03.040
  • El Khoury CN, Julien, SG. Inverse Association Between the Mediterranean Diet and COVID-19 Risk in Lebanon: A case-control study. Front Nutr. 2021;467. DOI:10.3389/fnut.2021.707359
  • Greene MW, Roberts AP, Frugé, AD. Negative association between Mediterranean diet adherence and COVID-19 cases and related deaths in Spain and 25 OECD countries: An ecological study. Front in Nutr. 2021;8:74. DOI:10.3389/fnut.2021.591964
  • Perez-Araluce R, Martinez-Gonzalez MA, Fernández-Lázaro CI., Bes-Rastrollo M, Gea A, Carlos S. Mediterranean diet and the risk of COVID-19 in the ‘Seguimiento Universidad de Navarra’cohort. Clin Nutr. 2021. DOI: 10.1016/j.clnu.2021.04.001
  • Pal A, Squitti R, Picozza M, Pawar A, Rongioletti M, Dutta AK. Zinc and COVID-19: basis of current clinical trials. Biol Trace Elem Res. 2021;199(8): 2882-2892. DOI:10.1007/s12011-020-02437-9
  • Joachimiak MP. Zinc against COVID-19? Symptom surveillance and deficiency risk groups. PLOS Negl Trop Dis. 2021;15(1);e0008895. DOI:10.1371/journal.pntd.0008895
  • Razeghi JS, Moradi TH, Togha M, Ariyanfar, S, Ghorbani Z, Naeeni S, Jafari E. The correlation between serum selenium, zinc, and COVID-19 severity: An observational study. BMC Infect Dis. 2021;21(1):1-9. DOI:10.1186/s12879-021-06617-3
  • Jothimani D, Kailasam E, Danielraj S, Nallathambi B, Ramachandran H, Sekar, P. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis. 2020;100:343-349. DOI:10.1016/j.ijid.2020.09.014
  • Khurana AK, Karna ST, Hussain A. Zinc and coronavirus disease 2019: causal or casual association? Chest, 2021;159(1):449-450. DOI:10.1016/j.chest.2020.08.2092
  • Doğan M. Zinc Deficiency and Excess. Klinik Tıp Pediatri Dergisi, 2020;12(1):13-19 (Turkish).
There are 48 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Melis Özmutaf 0000-0002-0204-2867

Fatma Hülyam Eren 0000-0002-5661-5632

Seray Kabaran 0000-0001-7022-4366

Publication Date June 28, 2024
Submission Date May 11, 2023
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Özmutaf, M., Eren, F. H., & Kabaran, S. (2024). The Association Between Obesity, Mediterranean Diet Adherence, Zinc, Depression and COVID-19 Susceptibility: An observational Study. Clinical and Experimental Health Sciences, 14(2), 357-366. https://doi.org/10.33808/clinexphealthsci.1296033
AMA Özmutaf M, Eren FH, Kabaran S. The Association Between Obesity, Mediterranean Diet Adherence, Zinc, Depression and COVID-19 Susceptibility: An observational Study. Clinical and Experimental Health Sciences. June 2024;14(2):357-366. doi:10.33808/clinexphealthsci.1296033
Chicago Özmutaf, Melis, Fatma Hülyam Eren, and Seray Kabaran. “The Association Between Obesity, Mediterranean Diet Adherence, Zinc, Depression and COVID-19 Susceptibility: An Observational Study”. Clinical and Experimental Health Sciences 14, no. 2 (June 2024): 357-66. https://doi.org/10.33808/clinexphealthsci.1296033.
EndNote Özmutaf M, Eren FH, Kabaran S (June 1, 2024) The Association Between Obesity, Mediterranean Diet Adherence, Zinc, Depression and COVID-19 Susceptibility: An observational Study. Clinical and Experimental Health Sciences 14 2 357–366.
IEEE M. Özmutaf, F. H. Eren, and S. Kabaran, “The Association Between Obesity, Mediterranean Diet Adherence, Zinc, Depression and COVID-19 Susceptibility: An observational Study”, Clinical and Experimental Health Sciences, vol. 14, no. 2, pp. 357–366, 2024, doi: 10.33808/clinexphealthsci.1296033.
ISNAD Özmutaf, Melis et al. “The Association Between Obesity, Mediterranean Diet Adherence, Zinc, Depression and COVID-19 Susceptibility: An Observational Study”. Clinical and Experimental Health Sciences 14/2 (June 2024), 357-366. https://doi.org/10.33808/clinexphealthsci.1296033.
JAMA Özmutaf M, Eren FH, Kabaran S. The Association Between Obesity, Mediterranean Diet Adherence, Zinc, Depression and COVID-19 Susceptibility: An observational Study. Clinical and Experimental Health Sciences. 2024;14:357–366.
MLA Özmutaf, Melis et al. “The Association Between Obesity, Mediterranean Diet Adherence, Zinc, Depression and COVID-19 Susceptibility: An Observational Study”. Clinical and Experimental Health Sciences, vol. 14, no. 2, 2024, pp. 357-66, doi:10.33808/clinexphealthsci.1296033.
Vancouver Özmutaf M, Eren FH, Kabaran S. The Association Between Obesity, Mediterranean Diet Adherence, Zinc, Depression and COVID-19 Susceptibility: An observational Study. Clinical and Experimental Health Sciences. 2024;14(2):357-66.

14639   14640