Research Article
BibTex RIS Cite

Antimicrobial Effectiveness of Hypochlorous Acid in Infected Dentin Tubules: A Pilot Study

Year 2025, Volume: 15 Issue: 1, 56 - 62, 28.03.2025
https://doi.org/10.33808/clinexphealthsci.1414218

Abstract

Objective: To assess the disinfection capacity of HOCl, NaOCl, and CHX on dentinal tubules.
Methods: Enterococcus faecalis suspension was supplemented to the dentin blocks. The groups were created according to the irrigation solution, 2.5% NaOCl was used in Group 1, 2% CHX in Group 3, and 200 ppm HOCI in Group 3. All the irrigants (50 µL) were dropped on dentin for 30 seconds, 1 min, and 3 min. Four samples were selected for each solution group to form its control group. To observe the bacterial growth 10 ml of a sample taken from the tubes was cultivated on Mueller-Hinton agar. After the incubation, the total number of colonies was determined.
Result: In Group 1, the number of colonies in the samples taken for all three-time intervals was 0, and the solution efficiency was found to be 100%. In Group 2, the success rate was 97.4%, 99.2%, and 99,9% for 30 sec., 1 min, and 3 min, respectively. In Group 3, the success rate was 63%, 86.3%, and 93,4% for 30 sec., 1 min, and 3 min, respectively.
Conclusion: HOCl has a success rate of antimicrobial effect of more than 90% at the end of the 3 min duration on dentinal tubules.

Ethical Statement

This study was approved by Ethics Committee of Akdeniz University Faculty of Medicine (KAEK-904)

References

  • Nair P, Henry S, Cano V, Vera J. Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after "one-visit" endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2005;99(2):231-52. https://doi.org/10.1016/j.tripleo.2004.10.005
  • Shuping GB, Ørstavik D, Sigurdsson A, Trope M. Reduction of intracanal bacteria using nickel-titanium rotary instrumentation and various medications. J Endod. 2000;26(12):751-5. https://doi.org/10.1097/00004770-200012000-00022
  • Winter J, Ilbert M, Graf P, Özcelik D, Jakob U. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell. 2008;135(4):691-701. https://doi.org/10.1016/j.cell.2008.09.024
  • Suman R, Javaid M, Haleem A, Vaishya R, Bahl S, Nandan D. Sustainability of Coronavirus on different surfaces. J Clin Exp Hepatol. 2020;10(4):386-90. https://doi.org/10.1016/j.jceh.2020.04.020
  • Chen C, Zhang X-J, Wang Y, Zhu L-X, Liu J. Waste water disinfection during SARS epidemic for microbiological and toxicological control. Biomed Environ Sci. 2006;19(3):173-8.
  • Block MS, Rowan BG. Hypochlorous acid-a review. Oral Maxillofac Surg. 2020;78(9):1461-6. https://doi.org/10.1016/j.joms.2020.06.029
  • United States Environmental Protection Agency. About List N: Disinfectants for Coronavirus (COVID-19) https://www.epa.gov/pesticide-registration/list-n-disinfectants-use-against-sars-cov-2., LAST UPDATED ON MAY 24, 2022.
  • Miller WD. The micro-organisms of the human mouth: the local and general diseases which are caused by them. SS White Dental Mfg. Company; 1890.
  • Haapasalo M, Ørstavik D. In vitro infection and of dentinal tubules. J Dent Res. 1987;66(8):1375-9. https://doi.org/10.1177/00220345870660081801
  • Zapata RO, Bramante CM, de Moraes IG, Bernardineli N, Gasparoto TH, Graeff MS, et al. Confocal laser scanning microscopy is appropriate to detect viability of Enterococcus faecalis in infected dentin. J Endod. 2008;34(10):1198-201. https://doi.org/10.1016/j.joen.2008.07.001
  • Parmar D, Hauman C, Leichter J, McNaughton A, Tompkins G. Bacterial localization and viability assessment in human ex vivo dentinal tubules by fluorescence confocal laser scanning microscopy. Int Endod J. 2011;44(7):644-51. https://doi.org/10.1111/j.1365-2591.2011.01867.x
  • Nagayoshi M, Kitamura C, Fukuizumi T, Nishihara T, Terashita M. Antimicrobial effect of ozonated water on bacteria invading dentinal tubules. J Endod. 2004;30(11):778-81. https://doi.org/10.1097/00004770-200411000-00007
  • Akdere, S. K., Aydin, Z. U., Erdönmez, D. Antimicrobial effectiveness of different irrigation activation techniques on teeth with artificial internal root resorption and contaminated with Enterococcus faecalis: a confocal laser scanning, icroscopy analysis. Lasers Med Sci. 2023;38(1), 89. https://doi.org/10.1007/s10103-023-03748-8
  • Swimberghe R, Coenye T, De Moor R, Meire M. Biofilm model systems for root canal disinfection: a literature review. Int Endod J. 2019; 52(5):604–628. https:// doi. org/10. 1111/iej. 13050
  • Shen Y, Stojicic S, Haapasalo M. Bacterial viability in starved and revitalized biofilms: comparison of viability staining and direct culture. J Endod. 2010;36(11):1820-3. https://doi.org/10.1016/j.joen.2010.08.029
  • Ma J, Wang Z, Shen Y, Haapasalo M. A new noninvasive model to study the effectiveness of dentin disinfection by using confocal laser scanning microscopy. J Endod. 2011;37(10):1380-5. https://doi.org/10.1016/j.joen.2011.06.018
  • Du T, Wang Z, Shen Y, Ma J, Cao Y, Haapasalo M (2014) Efect of long-term exposure to endodontic disinfecting solutions on young and old Enterococcus faecalis bioflms in dentin canals. J Endod 40(4):509–514. https://doi.org/10.1016/j.joen.2013.11.026
  • Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104(3):246-51. https://doi.org/10.1016/j.jhin.2020.01.022
  • Morita C, Nishida T, Ito K. Biological toxicity of acid electrolyzed functional water: Effect of oral administration on mouse digestive tract and changes in body weight. Arch Oral Biol. 2011;56(4):359-66. https://doi.org/10.1016/j.archoralbio.2010.10.016
  • Chen C-J, Chen C-C, Ding S-J. Effectiveness of hypochlorous acid to reduce the biofilms on titanium alloy surfaces in vitro. Int J Mol Sci. 2016;17(7):1161. https://doi.org/10.3390/ijms17071161
  • WangZ, ShenY,HaapasaloM. Effectiveness of endodontic disinfecting solutions against young and old Enterococcus faecalis biofilms in dentin canals. J Endod. 2012;38(10):1376–9. https://doi.org/10.1016/j.joen.2012.06.035
  • Arias-Moliz MT, Ordinola-Zapata R, Baca P, Ruiz-Linares M, Ferrer-Luque CM. Antimicrobial activity of a sodium hypochlorite/etidronic acid irrigant solution. J Endod. 2014;40(12):1999-2002. https://doi.org/10.1016/j.joen.2014.07.031
  • Orstavik D, Haapasalo M. Disinfection by endodontic irrigants and dressings of experimentally infected dentinal tubules. Endod Dent Traumatol. 1990;6(4):142–9. https://doi.org/10.1111/j.1600-9657.1990.tb00409.x
  • Wang D, Shen Y, Hancock RE, Ma J, Haapasalo M. Antimicrobial effect of peptide DJK-5 used alone or mixed with EDTA on mono-and multispecies biofilms in dentin canals. J Endod. 2018;44(11):1709-13. https://doi.org/10.1016/j.joen.2018.07.018
  • Wang D, Shen Y, Ma J, Hancock RE, Haapasalo M. Antibiofilm effect of D-enantiomeric peptide alone and combined with EDTA in vitro. J Endod. 2017;43(11):1862-7. https://doi.org/10.1016/j.joen.2017.06.037
  • Golob BS, Olivi G, Vrabec M, El Feghali R, Parker S, Benedicenti S. Efficacy of photon-induced photoacoustic streaming in the reduction of Enterococcus faecalis within the root canal: different settings and different sodium hypochlorite concentrations. J Endod. 2017;43(10):1730-5. https://doi.org/10.1016/j.joen.2017.05.019
  • Afhkami F, Ahmadi P, Chiniforush N, Sooratgar A. Effect of different activations of silver nanoparticle irrigants on the elimination of Enterococcus faecalis. Clin Oral Invest. 2021;25:6893-9. https://doi.org/10.1007/s00784-021-03979-5
  • Sinha DJ, Nandha KD, Jaiswal N, Vasudeva A, Tyagi SP, Singh UP. Antibacterial effect of Azadirachta indica (neem) or Curcuma longa (turmeric) against Enterococcus faecalis compared with that of 5% sodium hypochlorite or 2% chlorhexidine in vitro. Bull Tokyo Dent Coll. 2017;58(2):103-9. https://doi.org/10.2209/tdcpublication.2015-0029
  • Ruksakiet K, Hanák L, Farkas N, Hegyi P, Sadaeng W, Czumbel LM, et al. Antimicrobial efficacy of chlorhexidine and sodium hypochlorite in root canal disinfection: a systematic review and meta-analysis of randomized controlled trials. J Endod. 2020;46(8):1032-41 https://doi.org/10.1016/j.joen.2020.05.002
  • Tatnall F, Leigh I, Gibson J. Comparative study of antiseptic toxicity on basal keratinocytes, transformed human keratinocytes and fibroblasts. Skin Pharmacol Physiol. 1990;3(3):157-63. https://doi.org/10.1159/000210865
  • Lee TH, Hu CC, Lee SS, Chou MY, Chang YC. Cytotoxicity of chlorhexidine on human osteoblastic cells is related to intracellular glutathione levels. Int Endod J. 2010;43(5):430-5. https://doi.org/10.1111/j.1365-2591.2010.01700.x
  • Tu Y-Y, Yang C-Y, Chen R-S, Chen M-H. Effects of chlorhexidine on stem cells from exfoliated deciduous teeth. J Formos Med Assoc. 2015;114(1):17-22. https://doi.org/10.1016/j.jfma.2012.12.008
  • Wang L, Bassiri M, Najafi R, Najafi K, Yang J, Khosrovi B, et al. Hypochlorous acid as a potential wound care agent: part I. Stabilized hypochlorous acid: a component of the inorganic armamentarium of innate immunity. J Burns Wounds. 2007;6.
  • Luppens SB, Reij MW, van der Heijden RW, Rombouts FM, Abee T. Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Appl. Environ. Microbiol. 2002;68(9):4194-200. https://doi.org/10.1128/AEM.68.9.4194-4200.2002
  • Sandvik EL, McLeod BR, Parker AE, Stewart PS. Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid. PloS one. 2013;8:e55118. https://doi.org/10.1371/journal.pone.0055118
  • Claudio Milanese M. A new acid-oxidizing solution: assessment of its role on methicillin-resistant Staphylococcus aureus (MRSA) biofilm morphological changes. Wounds. 2015;27(10):265-73.
  • Romanowski EG, Stella NA, Yates KA, Brothers KM, Kowalski RP, Shanks RM. In vitro evaluation of a hypochlorous acid hygiene solution on established biofilms. Eye Contact lens. 2018;44(2):S187. https://doi.org/10.1097/ICL.0000000000000456
  • Park GW, Boston DM, Kase JA, Sampson MN, Sobsey MD. Evaluation of liquid-and fog-based application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus. Appl Environ Microbiol. 2007;73(14):4463-8. https://doi.org/10.1128/AEM.02839-06
  • Rossi‐Fedele G, Guastalli AR, Doğramacı E, Steier L, De Figueiredo J. Influence of pH changes on chlorine‐containing endodontic irrigating solutions. Int Endod J. 2011;44(9):792-9. https://doi.org/10.1111/j.1365-2591.2011.01911.x
  • Mainnemare A, Megarbane B, Soueidan A, Daniel A, Chapple I. Hypochlorous acid and taurine-N-monochloramine in periodontal diseases. J Dent Res. 2004;83(11):823-31. https://doi.org/10.1177/154405910408301101
  • Kameda T, Oka S, Igawa J-I, Sakamoto M, Terada K. Can hypochlorous acid be a powerful sanitizer to replace alcohol for disinfection?-Its bactericidal, degradation of the solutions under various storage condition, and steel rust effects. Dent Mat J. 2022;41(1):167-83. https://doi.org/10.4012/dmj.2021-146
  • Basrani B (2015) Endodontic irrigation: chemical disinfection of the root canal system. Springer International Publishing, Switzerland.
Year 2025, Volume: 15 Issue: 1, 56 - 62, 28.03.2025
https://doi.org/10.33808/clinexphealthsci.1414218

Abstract

References

  • Nair P, Henry S, Cano V, Vera J. Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after "one-visit" endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2005;99(2):231-52. https://doi.org/10.1016/j.tripleo.2004.10.005
  • Shuping GB, Ørstavik D, Sigurdsson A, Trope M. Reduction of intracanal bacteria using nickel-titanium rotary instrumentation and various medications. J Endod. 2000;26(12):751-5. https://doi.org/10.1097/00004770-200012000-00022
  • Winter J, Ilbert M, Graf P, Özcelik D, Jakob U. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell. 2008;135(4):691-701. https://doi.org/10.1016/j.cell.2008.09.024
  • Suman R, Javaid M, Haleem A, Vaishya R, Bahl S, Nandan D. Sustainability of Coronavirus on different surfaces. J Clin Exp Hepatol. 2020;10(4):386-90. https://doi.org/10.1016/j.jceh.2020.04.020
  • Chen C, Zhang X-J, Wang Y, Zhu L-X, Liu J. Waste water disinfection during SARS epidemic for microbiological and toxicological control. Biomed Environ Sci. 2006;19(3):173-8.
  • Block MS, Rowan BG. Hypochlorous acid-a review. Oral Maxillofac Surg. 2020;78(9):1461-6. https://doi.org/10.1016/j.joms.2020.06.029
  • United States Environmental Protection Agency. About List N: Disinfectants for Coronavirus (COVID-19) https://www.epa.gov/pesticide-registration/list-n-disinfectants-use-against-sars-cov-2., LAST UPDATED ON MAY 24, 2022.
  • Miller WD. The micro-organisms of the human mouth: the local and general diseases which are caused by them. SS White Dental Mfg. Company; 1890.
  • Haapasalo M, Ørstavik D. In vitro infection and of dentinal tubules. J Dent Res. 1987;66(8):1375-9. https://doi.org/10.1177/00220345870660081801
  • Zapata RO, Bramante CM, de Moraes IG, Bernardineli N, Gasparoto TH, Graeff MS, et al. Confocal laser scanning microscopy is appropriate to detect viability of Enterococcus faecalis in infected dentin. J Endod. 2008;34(10):1198-201. https://doi.org/10.1016/j.joen.2008.07.001
  • Parmar D, Hauman C, Leichter J, McNaughton A, Tompkins G. Bacterial localization and viability assessment in human ex vivo dentinal tubules by fluorescence confocal laser scanning microscopy. Int Endod J. 2011;44(7):644-51. https://doi.org/10.1111/j.1365-2591.2011.01867.x
  • Nagayoshi M, Kitamura C, Fukuizumi T, Nishihara T, Terashita M. Antimicrobial effect of ozonated water on bacteria invading dentinal tubules. J Endod. 2004;30(11):778-81. https://doi.org/10.1097/00004770-200411000-00007
  • Akdere, S. K., Aydin, Z. U., Erdönmez, D. Antimicrobial effectiveness of different irrigation activation techniques on teeth with artificial internal root resorption and contaminated with Enterococcus faecalis: a confocal laser scanning, icroscopy analysis. Lasers Med Sci. 2023;38(1), 89. https://doi.org/10.1007/s10103-023-03748-8
  • Swimberghe R, Coenye T, De Moor R, Meire M. Biofilm model systems for root canal disinfection: a literature review. Int Endod J. 2019; 52(5):604–628. https:// doi. org/10. 1111/iej. 13050
  • Shen Y, Stojicic S, Haapasalo M. Bacterial viability in starved and revitalized biofilms: comparison of viability staining and direct culture. J Endod. 2010;36(11):1820-3. https://doi.org/10.1016/j.joen.2010.08.029
  • Ma J, Wang Z, Shen Y, Haapasalo M. A new noninvasive model to study the effectiveness of dentin disinfection by using confocal laser scanning microscopy. J Endod. 2011;37(10):1380-5. https://doi.org/10.1016/j.joen.2011.06.018
  • Du T, Wang Z, Shen Y, Ma J, Cao Y, Haapasalo M (2014) Efect of long-term exposure to endodontic disinfecting solutions on young and old Enterococcus faecalis bioflms in dentin canals. J Endod 40(4):509–514. https://doi.org/10.1016/j.joen.2013.11.026
  • Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104(3):246-51. https://doi.org/10.1016/j.jhin.2020.01.022
  • Morita C, Nishida T, Ito K. Biological toxicity of acid electrolyzed functional water: Effect of oral administration on mouse digestive tract and changes in body weight. Arch Oral Biol. 2011;56(4):359-66. https://doi.org/10.1016/j.archoralbio.2010.10.016
  • Chen C-J, Chen C-C, Ding S-J. Effectiveness of hypochlorous acid to reduce the biofilms on titanium alloy surfaces in vitro. Int J Mol Sci. 2016;17(7):1161. https://doi.org/10.3390/ijms17071161
  • WangZ, ShenY,HaapasaloM. Effectiveness of endodontic disinfecting solutions against young and old Enterococcus faecalis biofilms in dentin canals. J Endod. 2012;38(10):1376–9. https://doi.org/10.1016/j.joen.2012.06.035
  • Arias-Moliz MT, Ordinola-Zapata R, Baca P, Ruiz-Linares M, Ferrer-Luque CM. Antimicrobial activity of a sodium hypochlorite/etidronic acid irrigant solution. J Endod. 2014;40(12):1999-2002. https://doi.org/10.1016/j.joen.2014.07.031
  • Orstavik D, Haapasalo M. Disinfection by endodontic irrigants and dressings of experimentally infected dentinal tubules. Endod Dent Traumatol. 1990;6(4):142–9. https://doi.org/10.1111/j.1600-9657.1990.tb00409.x
  • Wang D, Shen Y, Hancock RE, Ma J, Haapasalo M. Antimicrobial effect of peptide DJK-5 used alone or mixed with EDTA on mono-and multispecies biofilms in dentin canals. J Endod. 2018;44(11):1709-13. https://doi.org/10.1016/j.joen.2018.07.018
  • Wang D, Shen Y, Ma J, Hancock RE, Haapasalo M. Antibiofilm effect of D-enantiomeric peptide alone and combined with EDTA in vitro. J Endod. 2017;43(11):1862-7. https://doi.org/10.1016/j.joen.2017.06.037
  • Golob BS, Olivi G, Vrabec M, El Feghali R, Parker S, Benedicenti S. Efficacy of photon-induced photoacoustic streaming in the reduction of Enterococcus faecalis within the root canal: different settings and different sodium hypochlorite concentrations. J Endod. 2017;43(10):1730-5. https://doi.org/10.1016/j.joen.2017.05.019
  • Afhkami F, Ahmadi P, Chiniforush N, Sooratgar A. Effect of different activations of silver nanoparticle irrigants on the elimination of Enterococcus faecalis. Clin Oral Invest. 2021;25:6893-9. https://doi.org/10.1007/s00784-021-03979-5
  • Sinha DJ, Nandha KD, Jaiswal N, Vasudeva A, Tyagi SP, Singh UP. Antibacterial effect of Azadirachta indica (neem) or Curcuma longa (turmeric) against Enterococcus faecalis compared with that of 5% sodium hypochlorite or 2% chlorhexidine in vitro. Bull Tokyo Dent Coll. 2017;58(2):103-9. https://doi.org/10.2209/tdcpublication.2015-0029
  • Ruksakiet K, Hanák L, Farkas N, Hegyi P, Sadaeng W, Czumbel LM, et al. Antimicrobial efficacy of chlorhexidine and sodium hypochlorite in root canal disinfection: a systematic review and meta-analysis of randomized controlled trials. J Endod. 2020;46(8):1032-41 https://doi.org/10.1016/j.joen.2020.05.002
  • Tatnall F, Leigh I, Gibson J. Comparative study of antiseptic toxicity on basal keratinocytes, transformed human keratinocytes and fibroblasts. Skin Pharmacol Physiol. 1990;3(3):157-63. https://doi.org/10.1159/000210865
  • Lee TH, Hu CC, Lee SS, Chou MY, Chang YC. Cytotoxicity of chlorhexidine on human osteoblastic cells is related to intracellular glutathione levels. Int Endod J. 2010;43(5):430-5. https://doi.org/10.1111/j.1365-2591.2010.01700.x
  • Tu Y-Y, Yang C-Y, Chen R-S, Chen M-H. Effects of chlorhexidine on stem cells from exfoliated deciduous teeth. J Formos Med Assoc. 2015;114(1):17-22. https://doi.org/10.1016/j.jfma.2012.12.008
  • Wang L, Bassiri M, Najafi R, Najafi K, Yang J, Khosrovi B, et al. Hypochlorous acid as a potential wound care agent: part I. Stabilized hypochlorous acid: a component of the inorganic armamentarium of innate immunity. J Burns Wounds. 2007;6.
  • Luppens SB, Reij MW, van der Heijden RW, Rombouts FM, Abee T. Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Appl. Environ. Microbiol. 2002;68(9):4194-200. https://doi.org/10.1128/AEM.68.9.4194-4200.2002
  • Sandvik EL, McLeod BR, Parker AE, Stewart PS. Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid. PloS one. 2013;8:e55118. https://doi.org/10.1371/journal.pone.0055118
  • Claudio Milanese M. A new acid-oxidizing solution: assessment of its role on methicillin-resistant Staphylococcus aureus (MRSA) biofilm morphological changes. Wounds. 2015;27(10):265-73.
  • Romanowski EG, Stella NA, Yates KA, Brothers KM, Kowalski RP, Shanks RM. In vitro evaluation of a hypochlorous acid hygiene solution on established biofilms. Eye Contact lens. 2018;44(2):S187. https://doi.org/10.1097/ICL.0000000000000456
  • Park GW, Boston DM, Kase JA, Sampson MN, Sobsey MD. Evaluation of liquid-and fog-based application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus. Appl Environ Microbiol. 2007;73(14):4463-8. https://doi.org/10.1128/AEM.02839-06
  • Rossi‐Fedele G, Guastalli AR, Doğramacı E, Steier L, De Figueiredo J. Influence of pH changes on chlorine‐containing endodontic irrigating solutions. Int Endod J. 2011;44(9):792-9. https://doi.org/10.1111/j.1365-2591.2011.01911.x
  • Mainnemare A, Megarbane B, Soueidan A, Daniel A, Chapple I. Hypochlorous acid and taurine-N-monochloramine in periodontal diseases. J Dent Res. 2004;83(11):823-31. https://doi.org/10.1177/154405910408301101
  • Kameda T, Oka S, Igawa J-I, Sakamoto M, Terada K. Can hypochlorous acid be a powerful sanitizer to replace alcohol for disinfection?-Its bactericidal, degradation of the solutions under various storage condition, and steel rust effects. Dent Mat J. 2022;41(1):167-83. https://doi.org/10.4012/dmj.2021-146
  • Basrani B (2015) Endodontic irrigation: chemical disinfection of the root canal system. Springer International Publishing, Switzerland.
There are 42 citations in total.

Details

Primary Language English
Subjects Endodontics
Journal Section Articles
Authors

Simay Koc 0000-0002-9446-5655

Damla Kırıcı 0000-0001-8391-1034

Alper Kustarci 0000-0002-4942-3739

Naime Bulut 0000-0003-3349-0141

Kübra Yıldırım 0000-0003-0558-8619

Ahmet Yılmaz Çoban 0000-0001-5425-9155

Early Pub Date March 23, 2025
Publication Date March 28, 2025
Submission Date January 3, 2024
Acceptance Date January 6, 2025
Published in Issue Year 2025 Volume: 15 Issue: 1

Cite

APA Koc, S., Kırıcı, D., Kustarci, A., Bulut, N., et al. (2025). Antimicrobial Effectiveness of Hypochlorous Acid in Infected Dentin Tubules: A Pilot Study. Clinical and Experimental Health Sciences, 15(1), 56-62. https://doi.org/10.33808/clinexphealthsci.1414218
AMA Koc S, Kırıcı D, Kustarci A, Bulut N, Yıldırım K, Çoban AY. Antimicrobial Effectiveness of Hypochlorous Acid in Infected Dentin Tubules: A Pilot Study. Clinical and Experimental Health Sciences. March 2025;15(1):56-62. doi:10.33808/clinexphealthsci.1414218
Chicago Koc, Simay, Damla Kırıcı, Alper Kustarci, Naime Bulut, Kübra Yıldırım, and Ahmet Yılmaz Çoban. “Antimicrobial Effectiveness of Hypochlorous Acid in Infected Dentin Tubules: A Pilot Study”. Clinical and Experimental Health Sciences 15, no. 1 (March 2025): 56-62. https://doi.org/10.33808/clinexphealthsci.1414218.
EndNote Koc S, Kırıcı D, Kustarci A, Bulut N, Yıldırım K, Çoban AY (March 1, 2025) Antimicrobial Effectiveness of Hypochlorous Acid in Infected Dentin Tubules: A Pilot Study. Clinical and Experimental Health Sciences 15 1 56–62.
IEEE S. Koc, D. Kırıcı, A. Kustarci, N. Bulut, K. Yıldırım, and A. Y. Çoban, “Antimicrobial Effectiveness of Hypochlorous Acid in Infected Dentin Tubules: A Pilot Study”, Clinical and Experimental Health Sciences, vol. 15, no. 1, pp. 56–62, 2025, doi: 10.33808/clinexphealthsci.1414218.
ISNAD Koc, Simay et al. “Antimicrobial Effectiveness of Hypochlorous Acid in Infected Dentin Tubules: A Pilot Study”. Clinical and Experimental Health Sciences 15/1 (March 2025), 56-62. https://doi.org/10.33808/clinexphealthsci.1414218.
JAMA Koc S, Kırıcı D, Kustarci A, Bulut N, Yıldırım K, Çoban AY. Antimicrobial Effectiveness of Hypochlorous Acid in Infected Dentin Tubules: A Pilot Study. Clinical and Experimental Health Sciences. 2025;15:56–62.
MLA Koc, Simay et al. “Antimicrobial Effectiveness of Hypochlorous Acid in Infected Dentin Tubules: A Pilot Study”. Clinical and Experimental Health Sciences, vol. 15, no. 1, 2025, pp. 56-62, doi:10.33808/clinexphealthsci.1414218.
Vancouver Koc S, Kırıcı D, Kustarci A, Bulut N, Yıldırım K, Çoban AY. Antimicrobial Effectiveness of Hypochlorous Acid in Infected Dentin Tubules: A Pilot Study. Clinical and Experimental Health Sciences. 2025;15(1):56-62.

14639   14640