Research Article
BibTex RIS Cite
Year 2025, Volume: 15 Issue: 1, 210 - 216, 28.03.2025
https://doi.org/10.33808/clinexphealthsci.1603452

Abstract

Project Number

This work was supported by the The Scientific and Technological Research Council of Turkey (TUBITAK) [grant number 323S171].

References

  • Maurice J, Manousou P. Non-alcoholic fatty liver disease. Clin Med (Lond). 2018;18(3):245-50. https://doi.org/ 10.7861/clinmedicine.18-3-245.
  • Pouwels S, Sakran N, Graham Y, Leal A, Pintar T, Yang W, et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord. 2022;22(1):63. https://doi.org/10.1186/s12902-022-00980-1
  • Jegatheesan P, De Bandt JP. Fructose and NAFLD: The Multifaceted Aspects of Fructose Metabolism. Nutrients. 2017;9(3). https://doi.org/10.3390/nu9030230
  • Dholariya SJ, Orrick JA. Biochemistry, Fructose Metabolism. StatPearls. Treasure Island (FL)2024.
  • Zhang DM, Jiao RQ, Kong LD. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients. 2017;9(4). https://doi.org/10.3390/nu9040335
  • Lee GY, Jang H, Lee JH, Huh JY, Choi S, Chung J, et al. PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling. Mol Cell Biol. 2014;34(6):926-38. https://doi.org/10.1128/MCB.01166-13
  • Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109(9):1125-31. https://doi.org/ 10.1172/JCI15593.
  • Moslehi A, Hamidi-Zad Z. Role of SREBPs in Liver Diseases: A Mini-review. J Clin Transl Hepatol. 2018;6(3):332-8. https://doi.org/10.14218/JCTH.2017.00061
  • Herman MA, Samuel VT. The Sweet Path to Metabolic Demise: Fructose and Lipid Synthesis. Trends Endocrinol Metab. 2016;27(10):719-30. https://doi.org/10.1016/j.tem.2016.06.005
  • Nunes PM, Wright AJ, Veltien A, van Asten JJ, Tack CJ, Jones JG, et al. Dietary lipids do not contribute to the higher hepatic triglyceride levels of fructose- compared to glucose-fed mice. FASEB J. 2014;28(5):1988-97. https://doi.org/10.1096/fj.13-241208
  • Wang DD, Sievenpiper JL, de Souza RJ, Chiavaroli L, Ha V, Cozma AI, et al. The effects of fructose intake on serum uric acid vary among controlled dietary trials. J Nutr. 2012;142(5):916-23. https://doi.org/10.3945/jn.111.151951
  • Leibowitz A, Rehman A, Paradis P, Schiffrin EL. Role of T regulatory lymphocytes in the pathogenesis of high-fructose diet-induced metabolic syndrome. Hypertension. 2013;61(6):1316-21. https://doi.org/10.1161/HYPERTENSIONAHA.111.203521
  • Sozen E, Demirel-Yalciner T, Sari D, Avcilar C, Samanci TF, Ozer NK. Deficiency of SREBP1c modulates autophagy mediated lipid droplet catabolism during oleic acid induced steatosis. Metabol Open. 2021;12:100138. https://doi.org/10.1016/j.metop.2021.100138
  • Cui W, Chen SL, Hu KQ. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am J Transl Res. 2010;2(1):95-104. https://www.ncbi.nlm.nih.gov/pubmed/20182586
  • Zhu X, Yan H, Xia M, Chang X, Xu X, Wang L, et al. Metformin attenuates triglyceride accumulation in HepG2 cells through decreasing stearyl-coenzyme A desaturase 1 expression. Lipids Health Dis. 2018;17(1):114. https://doi.org/10.1186/s12944-018-0762-0
  • Cotter TG, Rinella M. Nonalcoholic Fatty Liver Disease 2020: The State of the Disease. Gastroenterology. 2020;158(7):1851-64. https://doi.org/10.1053/j.gastro.2020.01.052
  • Wang YL, Zhou X, Li DL, Ye JM. Role of the mTOR-autophagy-ER stress pathway in high fructose-induced metabolic-associated fatty liver disease. Acta Pharmacol Sin. 2022;43(1):10-4. https://doi.org/10.1038/s41401-021-00629-0
  • Aijala M, Malo E, Ukkola O, Bloigu R, Lehenkari P, Autio-Harmainen H, et al. Long-term fructose feeding changes the expression of leptin receptors and autophagy genes in the adipose tissue and liver of male rats: a possible link to elevated triglycerides. Genes Nutr. 2013;8(6):623-35. https://doi.org/10.1007/s12263-013-0357-3
  • Parks EJ, Skokan LE, Timlin MT, Dingfelder CS. Dietary sugars stimulate fatty acid synthesis in adults. J Nutr. 2008;138(6):1039-46. https://doi.org/10.1093/jn/138.6.1039
  • Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322-34. https://doi.org/10.1172/JCI37385
  • Lecoultre V, Egli L, Carrel G, Theytaz F, Kreis R, Schneiter P, et al. Effects of fructose and glucose overfeeding on hepatic insulin sensitivity and intrahepatic lipids in healthy humans. Obesity (Silver Spring). 2013;21(4):782-5. https://doi.org/10.1002/oby.20377
  • Laube H, Klor HU, Fussganger R, Pfeiffer EF. The effect of starch, sucrose, glucose and fructose on lipid metabolism in rats. Nutr Metab. 1973;15(4):273-80. https://doi.org/10.1159/000175450
  • Timlin MT, Parks EJ. Temporal pattern of de novo lipogenesis in the postprandial state in healthy men. Am J Clin Nutr. 2005;81(1):35-42. https://doi.org/10.1093/ajcn/81.1.35
  • Schwarz JM, Noworolski SM, Wen MJ, Dyachenko A, Prior JL, Weinberg ME, et al. Effect of a High-Fructose Weight-Maintaining Diet on Lipogenesis and Liver Fat. J Clin Endocrinol Metab. 2015;100(6):2434-42. https://doi.org/10.1210/jc.2014-3678
  • Kennedy AR, Pissios P, Otu H, Roberson R, Xue B, Asakura K, et al. A high-fat, ketogenic diet induces a unique metabolic state in mice. Am J Physiol Endocrinol Metab. 2007;292(6):E1724-39. https://doi.org/10.1152/ajpendo.00717.2006
  • Samuel VT. Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends Endocrinol Metab. 2011;22(2):60-5. https://doi.org/10.1016/j.tem.2010.10.003
  • Softic S, Cohen DE, Kahn CR. Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease. Dig Dis Sci. 2016;61(5):1282-93. https://doi.org/10.1007/s10620-016-4054-0
  • Chong MF, Fielding BA, Frayn KN. Mechanisms for the acute effect of fructose on postprandial lipemia. Am J Clin Nutr. 2007;85(6):1511-20. https://doi.org/10.1093/ajcn/85.6.1511
  • Faeh D, Minehira K, Schwarz JM, Periasamy R, Park S, Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes. 2005;54(7):1907-13. https://doi.org/10.2337/diabetes.54.7.1907
  • Ter Horst KW, Serlie MJ. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease. Nutrients. 2017;9(9). https://doi.org/10.3390/nu9090981
  • Malik VS, Hu FB. Fructose and Cardiometabolic Health: What the Evidence From Sugar-Sweetened Beverages Tells Us. J Am Coll Cardiol. 2015;66(14):1615-24. https://doi.org/10.1016/j.jacc.2015.08.025
  • Huggett ZJ, Smith A, De Vivo N, Gomez D, Jethwa P, Brameld JM, et al. A Comparison of Primary Human Hepatocytes and Hepatoma Cell Lines to Model the Effects of Fatty Acids, Fructose and Glucose on Liver Cell Lipid Accumulation. Nutrients. 2022;15(1). https://doi.org/10.3390/nu15010040
  • Hoang NA, Richter F, Schubert M, Lorkowski S, Klotz LO, Steinbrenner H. Differential capability of metabolic substrates to promote hepatocellular lipid accumulation. Eur J Nutr. 2019;58(8):3023-34. https://doi.org/10.1007/s00394-018-1847-2
  • Tsameret S, Chapnik N, Froy O. Differential Effect of Fructose in the Presence or Absence of Fatty Acids on Circadian Metabolism in Hepatocytes. Metabolites. 2023;13(2). https://doi.org/10.3390/metabo13020138
  • Li C, Li M, Sheng W, Zhou W, Zhang Z, Ji G, et al. High dietary Fructose Drives Metabolic Dysfunction-Associated Steatotic Liver Disease via Activating ubiquitin-specific peptidase 2/11beta-hydroxysteroid dehydrogenase type 1 Pathway in Mice. Int J Biol Sci. 2024;20(9):3480-96. https://doi.org/10.7150/ijbs.97309
  • Sasi USS, Sindhu G, Raghu KG. Corrigendum to 'Fructose-palmitate based high calorie induce steatosis in HepG2 cells via mitochondrial dysfunction: An in vitro approach' [Toxicology in Vitro 68 (2020) 104952]. Toxicol In Vitro. 2021;75:105177. https://doi.org/10.1016/j.tiv.2021.105177
  • Aragno M, Tomasinelli CE, Vercellinatto I, Catalano MG, Collino M, Fantozzi R, et al. SREBP-1c in nonalcoholic fatty liver disease induced by Western-type high-fat diet plus fructose in rats. Free Radic Biol Med. 2009;47(7):1067-74. https://doi.org/10.1016/j.freeradbiomed.2009.07.016
  • Bezerra RM, Ueno M, Silva MS, Tavares DQ, Carvalho CR, Saad MJ, et al. A high-fructose diet induces insulin resistance but not blood pressure changes in normotensive rats. Braz J Med Biol Res. 2001;34(9):1155-60. https://doi.org/10.1590/s0100-879x2001000900008
  • Tran LT, Yuen VG, McNeill JH. The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem. 2009;332(1-2):145-59. https://doi.org/10.1007/s11010-009-0184-4
  • Ruiz R, Jideonwo V, Ahn M, Surendran S, Tagliabracci VS, Hou Y, et al. Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver. J Biol Chem. 2014;289(9):5510-7. https://doi.org/10.1074/jbc.M113.541110
  • Li C, Yang W, Zhang J, Zheng X, Yao Y, Tu K, et al. SREBP-1 has a prognostic role and contributes to invasion and metastasis in human hepatocellular carcinoma. Int J Mol Sci. 2014;15(5):7124-38. https://doi.org/10.3390/ijms15057124
  • Jensen-Urstad AP, Semenkovich CF. Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger?. Biochimica et biophysica acta. 2012;1821(5):747–53. https://doi.org/10.1016/j.bbalip.2011.09.017
  • Paton CM, Ntambi JM. Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab. 2009;297(1):28-37. https://doi.org/10.1152/ajpendo.90897.2008
  • Lounis MA, Bergeron KF, Burhans MS, Ntambi JM, Mounier C. Oleate activates SREBP-1 signaling activity in SCD1-deficient hepatocytes. Am J Physiol Endocrinol Metab. 2017;313(6):710-20. https://doi.org/10.1152/ajpendo.00151.2017
  • Chen CL, Lin YC. Autophagy Dysregulation in Metabolic Associated Fatty Liver Disease: A New Therapeutic Target. Int J Mol Sci. 2022;23(17). https://doi.org/10.3390/ijms231710055
  • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131-5. https://doi.org/10.1038/nature07976
  • Wang H, Sun RQ, Zeng XY, Zhou X, Li S, Jo E, et al. Restoration of autophagy alleviates hepatic ER stress and impaired insulin signalling transduction in high fructose-fed male mice. Endocrinology. 2015;156(1):169-81. https://doi.org/10.1210/en.2014-1454
  • Gonzalez-Rodriguez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, Miquilena-Colina ME, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5(4):e1179. https://doi.org/10.1038/cddis.2014.162
  • Fukuo Y, Yamashina S, Sonoue H, Arakawa A, Nakadera E, Aoyama T, et al. Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease. Hepatol Res. 2014;44(9):1026-36. https://doi.org/10.1111/hepr.12282
  • Liu J, Jin X, Yu CH, Chen SH, Li WP, Li YM. Endoplasmic reticulum stress involved in the course of lipogenesis in fatty acids-induced hepatic steatosis. J Gastroenterol Hepatol. 2010;25(3):613-8. https://doi.org/10.1111/j.1440-1746.2009.06086.x
  • Sozen E, Demırel-yalcıner T, Demır DD, Oznacar B, Ozer NK. SREBP1c silencing reduces endoplasmic reticulum stress and related apoptosis in oleic acid induced lipid accumulation. Marmara Medical Journal. 2021;34(3):241-7.

SREBP-1c Deficiency Attenuates Fructose-Induced Lipid Droplet Accumulation

Year 2025, Volume: 15 Issue: 1, 210 - 216, 28.03.2025
https://doi.org/10.33808/clinexphealthsci.1603452

Abstract

Objective: Sterol regulatory element binding protein 1c (SREBP-1c), a transcription factor involved in the biosynthesis of fatty acids, is critical in metabolic dysfunction-associated fatty liver disease (MAFLD) by promoting lipid accumulation and metabolic dysregulation that leads to hepatic pathologies. Fructose, becoming increasingly common in diets, activates SREBP-1c by increasing acetyl-CoA production. Present study aimed to sought the effect of SREBP-1c in fructose induced lipid accumulation.
Methods: A fructose-induced lipid accumulation model was developed in mouse hepatocyte cells (AML12), where SREBP-1c expression was inhibited through siRNA transfection. Following different fructose concentrations, viability was determined by MTT assay, and the protein expression of SREBP-1c protein was determined by western blotting. The number of lipid droplets (LDs) was quantified microscopically, and lipogenic mRNA expressions of FASN, SCD1, GPAM, ACLY, ACSL1 and ACACA were detected by qRT-PCR.
Results: Western blotting and microscopic analysis indicated that 25 mM for 72 hours of fructose increased total LDs, together with SREBP-1c levels, without affecting cell viability. The mRNA expression of SREBP-1c decreased in the presence of siRNA, confirming siRNA efficacy. SREBP-1c silencing reduced the number of fructose-induced total LDs. As lipogenic mRNA expressions, SREBP-1c silencing reduced SCD1 and ACLY, while other genes were unaffected.
Conclusion: Silencing of SREBP-1c in hepatocytes demonstrated its beneficial effect by reducing fructose-induced LD accumulation.

Ethical Statement

This study was approved by Ethics Committee of Marmara University, School of Medicine Ethics Committee (Approval date: 01.02.2019; Number: 09.2019.188).

Supporting Institution

The Scientific and Technological Research Council of Turkey (TUBITAK).

Project Number

This work was supported by the The Scientific and Technological Research Council of Turkey (TUBITAK) [grant number 323S171].

Thanks

We would like to thank Marmara University for providing access to academic databases.

References

  • Maurice J, Manousou P. Non-alcoholic fatty liver disease. Clin Med (Lond). 2018;18(3):245-50. https://doi.org/ 10.7861/clinmedicine.18-3-245.
  • Pouwels S, Sakran N, Graham Y, Leal A, Pintar T, Yang W, et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord. 2022;22(1):63. https://doi.org/10.1186/s12902-022-00980-1
  • Jegatheesan P, De Bandt JP. Fructose and NAFLD: The Multifaceted Aspects of Fructose Metabolism. Nutrients. 2017;9(3). https://doi.org/10.3390/nu9030230
  • Dholariya SJ, Orrick JA. Biochemistry, Fructose Metabolism. StatPearls. Treasure Island (FL)2024.
  • Zhang DM, Jiao RQ, Kong LD. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients. 2017;9(4). https://doi.org/10.3390/nu9040335
  • Lee GY, Jang H, Lee JH, Huh JY, Choi S, Chung J, et al. PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling. Mol Cell Biol. 2014;34(6):926-38. https://doi.org/10.1128/MCB.01166-13
  • Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109(9):1125-31. https://doi.org/ 10.1172/JCI15593.
  • Moslehi A, Hamidi-Zad Z. Role of SREBPs in Liver Diseases: A Mini-review. J Clin Transl Hepatol. 2018;6(3):332-8. https://doi.org/10.14218/JCTH.2017.00061
  • Herman MA, Samuel VT. The Sweet Path to Metabolic Demise: Fructose and Lipid Synthesis. Trends Endocrinol Metab. 2016;27(10):719-30. https://doi.org/10.1016/j.tem.2016.06.005
  • Nunes PM, Wright AJ, Veltien A, van Asten JJ, Tack CJ, Jones JG, et al. Dietary lipids do not contribute to the higher hepatic triglyceride levels of fructose- compared to glucose-fed mice. FASEB J. 2014;28(5):1988-97. https://doi.org/10.1096/fj.13-241208
  • Wang DD, Sievenpiper JL, de Souza RJ, Chiavaroli L, Ha V, Cozma AI, et al. The effects of fructose intake on serum uric acid vary among controlled dietary trials. J Nutr. 2012;142(5):916-23. https://doi.org/10.3945/jn.111.151951
  • Leibowitz A, Rehman A, Paradis P, Schiffrin EL. Role of T regulatory lymphocytes in the pathogenesis of high-fructose diet-induced metabolic syndrome. Hypertension. 2013;61(6):1316-21. https://doi.org/10.1161/HYPERTENSIONAHA.111.203521
  • Sozen E, Demirel-Yalciner T, Sari D, Avcilar C, Samanci TF, Ozer NK. Deficiency of SREBP1c modulates autophagy mediated lipid droplet catabolism during oleic acid induced steatosis. Metabol Open. 2021;12:100138. https://doi.org/10.1016/j.metop.2021.100138
  • Cui W, Chen SL, Hu KQ. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am J Transl Res. 2010;2(1):95-104. https://www.ncbi.nlm.nih.gov/pubmed/20182586
  • Zhu X, Yan H, Xia M, Chang X, Xu X, Wang L, et al. Metformin attenuates triglyceride accumulation in HepG2 cells through decreasing stearyl-coenzyme A desaturase 1 expression. Lipids Health Dis. 2018;17(1):114. https://doi.org/10.1186/s12944-018-0762-0
  • Cotter TG, Rinella M. Nonalcoholic Fatty Liver Disease 2020: The State of the Disease. Gastroenterology. 2020;158(7):1851-64. https://doi.org/10.1053/j.gastro.2020.01.052
  • Wang YL, Zhou X, Li DL, Ye JM. Role of the mTOR-autophagy-ER stress pathway in high fructose-induced metabolic-associated fatty liver disease. Acta Pharmacol Sin. 2022;43(1):10-4. https://doi.org/10.1038/s41401-021-00629-0
  • Aijala M, Malo E, Ukkola O, Bloigu R, Lehenkari P, Autio-Harmainen H, et al. Long-term fructose feeding changes the expression of leptin receptors and autophagy genes in the adipose tissue and liver of male rats: a possible link to elevated triglycerides. Genes Nutr. 2013;8(6):623-35. https://doi.org/10.1007/s12263-013-0357-3
  • Parks EJ, Skokan LE, Timlin MT, Dingfelder CS. Dietary sugars stimulate fatty acid synthesis in adults. J Nutr. 2008;138(6):1039-46. https://doi.org/10.1093/jn/138.6.1039
  • Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322-34. https://doi.org/10.1172/JCI37385
  • Lecoultre V, Egli L, Carrel G, Theytaz F, Kreis R, Schneiter P, et al. Effects of fructose and glucose overfeeding on hepatic insulin sensitivity and intrahepatic lipids in healthy humans. Obesity (Silver Spring). 2013;21(4):782-5. https://doi.org/10.1002/oby.20377
  • Laube H, Klor HU, Fussganger R, Pfeiffer EF. The effect of starch, sucrose, glucose and fructose on lipid metabolism in rats. Nutr Metab. 1973;15(4):273-80. https://doi.org/10.1159/000175450
  • Timlin MT, Parks EJ. Temporal pattern of de novo lipogenesis in the postprandial state in healthy men. Am J Clin Nutr. 2005;81(1):35-42. https://doi.org/10.1093/ajcn/81.1.35
  • Schwarz JM, Noworolski SM, Wen MJ, Dyachenko A, Prior JL, Weinberg ME, et al. Effect of a High-Fructose Weight-Maintaining Diet on Lipogenesis and Liver Fat. J Clin Endocrinol Metab. 2015;100(6):2434-42. https://doi.org/10.1210/jc.2014-3678
  • Kennedy AR, Pissios P, Otu H, Roberson R, Xue B, Asakura K, et al. A high-fat, ketogenic diet induces a unique metabolic state in mice. Am J Physiol Endocrinol Metab. 2007;292(6):E1724-39. https://doi.org/10.1152/ajpendo.00717.2006
  • Samuel VT. Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends Endocrinol Metab. 2011;22(2):60-5. https://doi.org/10.1016/j.tem.2010.10.003
  • Softic S, Cohen DE, Kahn CR. Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease. Dig Dis Sci. 2016;61(5):1282-93. https://doi.org/10.1007/s10620-016-4054-0
  • Chong MF, Fielding BA, Frayn KN. Mechanisms for the acute effect of fructose on postprandial lipemia. Am J Clin Nutr. 2007;85(6):1511-20. https://doi.org/10.1093/ajcn/85.6.1511
  • Faeh D, Minehira K, Schwarz JM, Periasamy R, Park S, Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes. 2005;54(7):1907-13. https://doi.org/10.2337/diabetes.54.7.1907
  • Ter Horst KW, Serlie MJ. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease. Nutrients. 2017;9(9). https://doi.org/10.3390/nu9090981
  • Malik VS, Hu FB. Fructose and Cardiometabolic Health: What the Evidence From Sugar-Sweetened Beverages Tells Us. J Am Coll Cardiol. 2015;66(14):1615-24. https://doi.org/10.1016/j.jacc.2015.08.025
  • Huggett ZJ, Smith A, De Vivo N, Gomez D, Jethwa P, Brameld JM, et al. A Comparison of Primary Human Hepatocytes and Hepatoma Cell Lines to Model the Effects of Fatty Acids, Fructose and Glucose on Liver Cell Lipid Accumulation. Nutrients. 2022;15(1). https://doi.org/10.3390/nu15010040
  • Hoang NA, Richter F, Schubert M, Lorkowski S, Klotz LO, Steinbrenner H. Differential capability of metabolic substrates to promote hepatocellular lipid accumulation. Eur J Nutr. 2019;58(8):3023-34. https://doi.org/10.1007/s00394-018-1847-2
  • Tsameret S, Chapnik N, Froy O. Differential Effect of Fructose in the Presence or Absence of Fatty Acids on Circadian Metabolism in Hepatocytes. Metabolites. 2023;13(2). https://doi.org/10.3390/metabo13020138
  • Li C, Li M, Sheng W, Zhou W, Zhang Z, Ji G, et al. High dietary Fructose Drives Metabolic Dysfunction-Associated Steatotic Liver Disease via Activating ubiquitin-specific peptidase 2/11beta-hydroxysteroid dehydrogenase type 1 Pathway in Mice. Int J Biol Sci. 2024;20(9):3480-96. https://doi.org/10.7150/ijbs.97309
  • Sasi USS, Sindhu G, Raghu KG. Corrigendum to 'Fructose-palmitate based high calorie induce steatosis in HepG2 cells via mitochondrial dysfunction: An in vitro approach' [Toxicology in Vitro 68 (2020) 104952]. Toxicol In Vitro. 2021;75:105177. https://doi.org/10.1016/j.tiv.2021.105177
  • Aragno M, Tomasinelli CE, Vercellinatto I, Catalano MG, Collino M, Fantozzi R, et al. SREBP-1c in nonalcoholic fatty liver disease induced by Western-type high-fat diet plus fructose in rats. Free Radic Biol Med. 2009;47(7):1067-74. https://doi.org/10.1016/j.freeradbiomed.2009.07.016
  • Bezerra RM, Ueno M, Silva MS, Tavares DQ, Carvalho CR, Saad MJ, et al. A high-fructose diet induces insulin resistance but not blood pressure changes in normotensive rats. Braz J Med Biol Res. 2001;34(9):1155-60. https://doi.org/10.1590/s0100-879x2001000900008
  • Tran LT, Yuen VG, McNeill JH. The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem. 2009;332(1-2):145-59. https://doi.org/10.1007/s11010-009-0184-4
  • Ruiz R, Jideonwo V, Ahn M, Surendran S, Tagliabracci VS, Hou Y, et al. Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver. J Biol Chem. 2014;289(9):5510-7. https://doi.org/10.1074/jbc.M113.541110
  • Li C, Yang W, Zhang J, Zheng X, Yao Y, Tu K, et al. SREBP-1 has a prognostic role and contributes to invasion and metastasis in human hepatocellular carcinoma. Int J Mol Sci. 2014;15(5):7124-38. https://doi.org/10.3390/ijms15057124
  • Jensen-Urstad AP, Semenkovich CF. Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger?. Biochimica et biophysica acta. 2012;1821(5):747–53. https://doi.org/10.1016/j.bbalip.2011.09.017
  • Paton CM, Ntambi JM. Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab. 2009;297(1):28-37. https://doi.org/10.1152/ajpendo.90897.2008
  • Lounis MA, Bergeron KF, Burhans MS, Ntambi JM, Mounier C. Oleate activates SREBP-1 signaling activity in SCD1-deficient hepatocytes. Am J Physiol Endocrinol Metab. 2017;313(6):710-20. https://doi.org/10.1152/ajpendo.00151.2017
  • Chen CL, Lin YC. Autophagy Dysregulation in Metabolic Associated Fatty Liver Disease: A New Therapeutic Target. Int J Mol Sci. 2022;23(17). https://doi.org/10.3390/ijms231710055
  • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131-5. https://doi.org/10.1038/nature07976
  • Wang H, Sun RQ, Zeng XY, Zhou X, Li S, Jo E, et al. Restoration of autophagy alleviates hepatic ER stress and impaired insulin signalling transduction in high fructose-fed male mice. Endocrinology. 2015;156(1):169-81. https://doi.org/10.1210/en.2014-1454
  • Gonzalez-Rodriguez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, Miquilena-Colina ME, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5(4):e1179. https://doi.org/10.1038/cddis.2014.162
  • Fukuo Y, Yamashina S, Sonoue H, Arakawa A, Nakadera E, Aoyama T, et al. Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease. Hepatol Res. 2014;44(9):1026-36. https://doi.org/10.1111/hepr.12282
  • Liu J, Jin X, Yu CH, Chen SH, Li WP, Li YM. Endoplasmic reticulum stress involved in the course of lipogenesis in fatty acids-induced hepatic steatosis. J Gastroenterol Hepatol. 2010;25(3):613-8. https://doi.org/10.1111/j.1440-1746.2009.06086.x
  • Sozen E, Demırel-yalcıner T, Demır DD, Oznacar B, Ozer NK. SREBP1c silencing reduces endoplasmic reticulum stress and related apoptosis in oleic acid induced lipid accumulation. Marmara Medical Journal. 2021;34(3):241-7.
There are 51 citations in total.

Details

Primary Language English
Subjects Medical Biochemistry - Lipids
Journal Section Articles
Authors

Seher Mese-tayfur 0009-0009-4705-2995

Ibrahim Isot 0009-0000-9857-742X

Bengu Cetinkaya 0000-0003-3487-7065

Tugce Demirel-yalciner 0000-0002-6540-882X

Nesrin Kartal Ozer 0000-0002-4968-3178

Erdi Sozen 0000-0002-6046-7679

Project Number This work was supported by the The Scientific and Technological Research Council of Turkey (TUBITAK) [grant number 323S171].
Early Pub Date March 23, 2025
Publication Date March 28, 2025
Submission Date December 20, 2024
Acceptance Date January 31, 2025
Published in Issue Year 2025 Volume: 15 Issue: 1

Cite

APA Mese-tayfur, S., Isot, I., Cetinkaya, B., Demirel-yalciner, T., et al. (2025). SREBP-1c Deficiency Attenuates Fructose-Induced Lipid Droplet Accumulation. Clinical and Experimental Health Sciences, 15(1), 210-216. https://doi.org/10.33808/clinexphealthsci.1603452
AMA Mese-tayfur S, Isot I, Cetinkaya B, Demirel-yalciner T, Ozer NK, Sozen E. SREBP-1c Deficiency Attenuates Fructose-Induced Lipid Droplet Accumulation. Clinical and Experimental Health Sciences. March 2025;15(1):210-216. doi:10.33808/clinexphealthsci.1603452
Chicago Mese-tayfur, Seher, Ibrahim Isot, Bengu Cetinkaya, Tugce Demirel-yalciner, Nesrin Kartal Ozer, and Erdi Sozen. “SREBP-1c Deficiency Attenuates Fructose-Induced Lipid Droplet Accumulation”. Clinical and Experimental Health Sciences 15, no. 1 (March 2025): 210-16. https://doi.org/10.33808/clinexphealthsci.1603452.
EndNote Mese-tayfur S, Isot I, Cetinkaya B, Demirel-yalciner T, Ozer NK, Sozen E (March 1, 2025) SREBP-1c Deficiency Attenuates Fructose-Induced Lipid Droplet Accumulation. Clinical and Experimental Health Sciences 15 1 210–216.
IEEE S. Mese-tayfur, I. Isot, B. Cetinkaya, T. Demirel-yalciner, N. K. Ozer, and E. Sozen, “SREBP-1c Deficiency Attenuates Fructose-Induced Lipid Droplet Accumulation”, Clinical and Experimental Health Sciences, vol. 15, no. 1, pp. 210–216, 2025, doi: 10.33808/clinexphealthsci.1603452.
ISNAD Mese-tayfur, Seher et al. “SREBP-1c Deficiency Attenuates Fructose-Induced Lipid Droplet Accumulation”. Clinical and Experimental Health Sciences 15/1 (March 2025), 210-216. https://doi.org/10.33808/clinexphealthsci.1603452.
JAMA Mese-tayfur S, Isot I, Cetinkaya B, Demirel-yalciner T, Ozer NK, Sozen E. SREBP-1c Deficiency Attenuates Fructose-Induced Lipid Droplet Accumulation. Clinical and Experimental Health Sciences. 2025;15:210–216.
MLA Mese-tayfur, Seher et al. “SREBP-1c Deficiency Attenuates Fructose-Induced Lipid Droplet Accumulation”. Clinical and Experimental Health Sciences, vol. 15, no. 1, 2025, pp. 210-6, doi:10.33808/clinexphealthsci.1603452.
Vancouver Mese-tayfur S, Isot I, Cetinkaya B, Demirel-yalciner T, Ozer NK, Sozen E. SREBP-1c Deficiency Attenuates Fructose-Induced Lipid Droplet Accumulation. Clinical and Experimental Health Sciences. 2025;15(1):210-6.

14639   14640