Year 2025,
Volume: 15 Issue: 3, 654 - 660, 30.09.2025
Emrah Sarıyer
,
Gamze Ağırbaş
References
-
Rahman M, and Khan MKA. In silico based unraveling of New Delhi metallo-β-lactamase (NDM-1) inhibitors from natural compounds: a molecular docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics. 2020; 38(7):2093-2103. https://doi.org/10.1080/07391102.2019.1627248
-
Ali A, Gupta D, Srivastava G, Sharma A, Khan AU. Molecular and computational approaches to understand resistance of New Delhi metallo β-lactamase variants (NDM-1, NDM-4, NDM-5, NDM-6, NDM-7)-producing strains against carbapenems. Journal of Biomolecular Structure and Dynamics. 2019;37(8)2061-2071. https://doi.org/10.1080/07391102.2018.1475261
-
Zmarlicka MT, Nailor MD, Nicolau DP. Impact of the New Delhi metallo-beta-lactamase on beta-lactam antibiotics. Infection and Drug Resistance. 2015;8:297-309. https://doi.org/10.2147/IDR.S39186
-
Chiou J, Leung TYC, Chen S. Molecular mechanisms of substrate recognition and specificity of New Delhi metallo-β-lactamase. Antimicrobial Agents and Chemotherapy. 2014;58(9):5372-5378. https://doi.org/10.1128/aac.01977-13
-
Kar B, Kundu CN, Pati S, Bhattacharya, D. Discovery of phyto-compounds as novel inhibitors against NDM-1 and VIM-1 protein through virtual screening and molecular modelling. Journal of Biomolecular Structure and Dynamics. 2023;41(4):1267-1280. https://doi.org/10.1080/07391102.2021.2019125
-
Rolain J, Parola P, and Cornaglia G. New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia? Clinical Microbiology and Infection. 2010;16(12):1699-1701. https://doi.org/10.1111/j.1469-0691.2010.03385.x
-
Nagulapalli Venkata, KC, Ellebrecht M, Tripathi SK. Efforts towards the inhibitor design for New Delhi metallo-beta-lactamase (NDM-1). European Journal of Medicinal Chemistry. 2021;225:113747. https://doi.org/10.1016/j.ejmech.2021.113747
-
Smith CA, Antunes NT, Stewart NK, Toth M, Kumarasiri M, Chang M, Mobashery S, Vakulenko SB. Structural basis for carbapenemase activity of the OXA-23 β-lactamase from Acinetobacter baumannii. Chemistry & Biology. 2013;20(9):1107-1115. https://doi.org/10.1016/j.chembiol.2013.07.015
-
Arrigoni R, Ballini A, Santacroce L, Palese LL. The Dynamics of OXA-23 β-Lactamase from Acinetobacter baumannii. International Journal of Molecular Sciences. 2023;24(24): 17527. https://doi.org/10.3390/ijms242417527
-
Torol S, Kasap M. Purification and characterization of OXA-23 from Acinetobacter baumannii. Journal of Enzyme Inhibition and Medicinal Chemistry. 2013;28(4):836-842. https://doi.org/10.3109/14756366.2012.689296
-
Paggi JM, Pandit A, Dror RO. The art and science of molecular docking. Annual Review of Biochemistry. 2024;93(1):389-410. https://doi.org/10.1146/annurev-biochem-030222-120000
-
Stanzione F, Giangreco I, Cole and JC. Use of molecular docking computational tools in drug discovery. Progress in Medicinal Chemistry. 2021;60: p. 273-343. https://doi.org/10.1016/bs.pmch.2021.01.004
-
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer TF, Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. Swiss-Model: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-w303. https://doi.org/10.1093/nar/gky427
-
Bienert S, Waterhouse A, De Beer TA, Tauriello G, Studer G, Bordoli L, Schwede T. The Swiss-Model repository-new features and functionality. Nucleic Acids Research. 2017;45(D1): D313-319. https://doi.org/10.1093/nar/gkw1132
-
Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with Swiss-Model and Swiss-PdbViewer: a historical perspective. Electrophoresis. 2009;30 Suppl 1: 162-173. https://doi.org/10.1002/elps.200900140
-
Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics, 2020;36(6):1765-1771. https://doi.org/10.1093/bioinformatics/btz828
-
Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific reports. 2017;7(1):10480. https://doi.org/10.1038/s41598-017-09654-8
-
Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993;2(9):1511-1519. https://doi.org/10.1002/pro.5560020916
-
Bowie JU, Lüthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991;253(5016):164-170. https://doi.org/10.1126/science.1853201
-
Lüthy R, Bowie JU, Eisenberg D. Eisenberg, Assessment of protein models with three-dimensional profiles. Nature. 1992;356(6364):83-85. https://doi.org/10.1038/356083a0
-
Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996;8(4):477-486. https://doi.org/10.1007/BF00228148
-
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. Procheck: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography. 1993;26(2):283-291. https://doi.org/10.1107/S0021889892009944
-
Sanner MF. Python: A programming language for software integration and development. J Mol Graph Model. 1999;17(1):57-61.
-
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-2791. https://doi.org/10.1002/jcc.21256
-
PyMOL, in Version 2.0. Schrödinger. LLC.
-
Schrödinger Release 2024-4: Maestro, S., LLC, New York, NY, 2024.
-
King D, Strynadka N. Crystal structure of New Delhi metallo‐β‐lactamase reveals molecular basis for antibiotic resistance. Protein Science. 2011;20(9):1484-1491. https://doi.org/10.1002/pro.697
-
Smith CA, Antunes NT, Stewart NK, Toth M, Kumarasiri M, Chang M, Vakulenko SB. Structural basis for carbapenemase activity of the OXA-23 β-lactamase from Acinetobacter baumannii. Chemistry & Biology. 2013;20(9):1107-1115. https://doi.org/10.1016/j.chembiol.2013.07.015.
Comparative Molecular Docking Analysis of Carbapenem Antibiotics with Ndm-1 and OXA-23 Β-Lactamases: Insights into Binding Mechanisms
Year 2025,
Volume: 15 Issue: 3, 654 - 660, 30.09.2025
Emrah Sarıyer
,
Gamze Ağırbaş
Abstract
Objective: This study aimed to investigate the molecular interactions between carbapenem antibiotics (imipenem and meropenem) and two β-lactamase enzymes, NDM-1 (class B) and OXA-23 (class D), to understand the structural basis of carbapenem resistance.
Methods: The study employed molecular docking methods using the crystal structures and homology models of the NDM-1 and OXA-23 enzymes to analyze binding affinities and interaction patterns.
Results: The results revealed distinct binding characteristics for each enzyme. NDM-1 exhibited a polar, hydrophobic active site, with imipenem forming hydrogen bonds with ASP124, ASN220, and LYS211, while meropenem relied on weaker interactions like Van der Waals forces. In contrast, OXA-23 featured a hydrophobic cavity with charged residues, where imipenem bonded with ARG259 and meropenem interacted with SER79, TRP219, and ARG259. A key finding was the significantly lower binding energy for the OXA-23-imipenem complex in the crystal structure (-8.06 kcal/mol) compared to its homology model (-5.34 kcal/mol), highlighting the importance of accurate structural representation. The study demonstrated strong agreement between the computational and experimental data.
Conclusion: These findings provide critical insights into the structural basis of carbapenem resistance, offering potential avenues for designing inhibitors to combat β-lactamase-mediated antibiotic resistance. The integrated approach validates the utility of computational methods in elucidating molecular interactions and guiding therapeutic strategies.
Ethical Statement
This study does not require ethical approval as it involves computational analysis without human or animal subjects.
Supporting Institution
The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.
References
-
Rahman M, and Khan MKA. In silico based unraveling of New Delhi metallo-β-lactamase (NDM-1) inhibitors from natural compounds: a molecular docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics. 2020; 38(7):2093-2103. https://doi.org/10.1080/07391102.2019.1627248
-
Ali A, Gupta D, Srivastava G, Sharma A, Khan AU. Molecular and computational approaches to understand resistance of New Delhi metallo β-lactamase variants (NDM-1, NDM-4, NDM-5, NDM-6, NDM-7)-producing strains against carbapenems. Journal of Biomolecular Structure and Dynamics. 2019;37(8)2061-2071. https://doi.org/10.1080/07391102.2018.1475261
-
Zmarlicka MT, Nailor MD, Nicolau DP. Impact of the New Delhi metallo-beta-lactamase on beta-lactam antibiotics. Infection and Drug Resistance. 2015;8:297-309. https://doi.org/10.2147/IDR.S39186
-
Chiou J, Leung TYC, Chen S. Molecular mechanisms of substrate recognition and specificity of New Delhi metallo-β-lactamase. Antimicrobial Agents and Chemotherapy. 2014;58(9):5372-5378. https://doi.org/10.1128/aac.01977-13
-
Kar B, Kundu CN, Pati S, Bhattacharya, D. Discovery of phyto-compounds as novel inhibitors against NDM-1 and VIM-1 protein through virtual screening and molecular modelling. Journal of Biomolecular Structure and Dynamics. 2023;41(4):1267-1280. https://doi.org/10.1080/07391102.2021.2019125
-
Rolain J, Parola P, and Cornaglia G. New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia? Clinical Microbiology and Infection. 2010;16(12):1699-1701. https://doi.org/10.1111/j.1469-0691.2010.03385.x
-
Nagulapalli Venkata, KC, Ellebrecht M, Tripathi SK. Efforts towards the inhibitor design for New Delhi metallo-beta-lactamase (NDM-1). European Journal of Medicinal Chemistry. 2021;225:113747. https://doi.org/10.1016/j.ejmech.2021.113747
-
Smith CA, Antunes NT, Stewart NK, Toth M, Kumarasiri M, Chang M, Mobashery S, Vakulenko SB. Structural basis for carbapenemase activity of the OXA-23 β-lactamase from Acinetobacter baumannii. Chemistry & Biology. 2013;20(9):1107-1115. https://doi.org/10.1016/j.chembiol.2013.07.015
-
Arrigoni R, Ballini A, Santacroce L, Palese LL. The Dynamics of OXA-23 β-Lactamase from Acinetobacter baumannii. International Journal of Molecular Sciences. 2023;24(24): 17527. https://doi.org/10.3390/ijms242417527
-
Torol S, Kasap M. Purification and characterization of OXA-23 from Acinetobacter baumannii. Journal of Enzyme Inhibition and Medicinal Chemistry. 2013;28(4):836-842. https://doi.org/10.3109/14756366.2012.689296
-
Paggi JM, Pandit A, Dror RO. The art and science of molecular docking. Annual Review of Biochemistry. 2024;93(1):389-410. https://doi.org/10.1146/annurev-biochem-030222-120000
-
Stanzione F, Giangreco I, Cole and JC. Use of molecular docking computational tools in drug discovery. Progress in Medicinal Chemistry. 2021;60: p. 273-343. https://doi.org/10.1016/bs.pmch.2021.01.004
-
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer TF, Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. Swiss-Model: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-w303. https://doi.org/10.1093/nar/gky427
-
Bienert S, Waterhouse A, De Beer TA, Tauriello G, Studer G, Bordoli L, Schwede T. The Swiss-Model repository-new features and functionality. Nucleic Acids Research. 2017;45(D1): D313-319. https://doi.org/10.1093/nar/gkw1132
-
Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with Swiss-Model and Swiss-PdbViewer: a historical perspective. Electrophoresis. 2009;30 Suppl 1: 162-173. https://doi.org/10.1002/elps.200900140
-
Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics, 2020;36(6):1765-1771. https://doi.org/10.1093/bioinformatics/btz828
-
Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific reports. 2017;7(1):10480. https://doi.org/10.1038/s41598-017-09654-8
-
Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993;2(9):1511-1519. https://doi.org/10.1002/pro.5560020916
-
Bowie JU, Lüthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991;253(5016):164-170. https://doi.org/10.1126/science.1853201
-
Lüthy R, Bowie JU, Eisenberg D. Eisenberg, Assessment of protein models with three-dimensional profiles. Nature. 1992;356(6364):83-85. https://doi.org/10.1038/356083a0
-
Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996;8(4):477-486. https://doi.org/10.1007/BF00228148
-
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. Procheck: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography. 1993;26(2):283-291. https://doi.org/10.1107/S0021889892009944
-
Sanner MF. Python: A programming language for software integration and development. J Mol Graph Model. 1999;17(1):57-61.
-
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-2791. https://doi.org/10.1002/jcc.21256
-
PyMOL, in Version 2.0. Schrödinger. LLC.
-
Schrödinger Release 2024-4: Maestro, S., LLC, New York, NY, 2024.
-
King D, Strynadka N. Crystal structure of New Delhi metallo‐β‐lactamase reveals molecular basis for antibiotic resistance. Protein Science. 2011;20(9):1484-1491. https://doi.org/10.1002/pro.697
-
Smith CA, Antunes NT, Stewart NK, Toth M, Kumarasiri M, Chang M, Vakulenko SB. Structural basis for carbapenemase activity of the OXA-23 β-lactamase from Acinetobacter baumannii. Chemistry & Biology. 2013;20(9):1107-1115. https://doi.org/10.1016/j.chembiol.2013.07.015.