Year 2025,
Volume: 15 Issue: 4, 1 - 11
Çağlar Çelebi
,
Tuğçe Balcı Okcanoğlu
,
Çağla Kayabaşı
,
Besra Özmen Yelken
,
Aycan Aşık
,
Roya Gasımlı
,
Eda Tayfur
,
Cumhur Gündüz
References
-
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. https://doi.org/10.3322/CAAC.21660
-
World Health Organization.Global Breast Cancer Initiative Implementation Framework. Published [2023]. https://iris.who.int/bitstream/handle/10665/365784/9789240067134-eng.pdf
-
Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: A critical review. J Clin Oncol. 2008; 20;26(15):2568-81. https://doi.org/10.1200/JCO.2007.13.1748
-
Perou CM, Sørile T, Eisen MB, Van De Rijn M, Jeffrey SS, Ress CA, Pollack J R, Ross D T, Johnsen H, Akslen L A, Fluge O, Pergamenschikov A, Williams C, Zhu S X, Lønning P E, Børresen-Dale A L, Brown P O, Botstein D. Molecular portraits of human breast tumours. Nature. 2000; 406(6797):747-52. https://doi.org/10.1038/35021093
-
Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, S Wicha M, Dontu G. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555-67. https://doi.org/10.1016/j.stem.2007.08.014
-
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983-8. https://doi.org/10.1073/pnas.0530291100
-
Visvader JE, Lindeman GJ. Cancer stem cells: Current status and evolving complexities. Cell Stem Cell. 2012;10(6):717-728. https://doi.org/10.1016/j.stem.2012.05.007
-
Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif. 2003;36 (Suppl 1):59-72. https://doi.org/10.1046/J.1365-2184.36.S.1.6.X
-
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-11. https://doi.org/10.1038/35102167
-
Ferrari P, Scatena C, Ghilli M, Bargagna I, Lorenzini G, Nicolini A. Molecular mechanisms, biomarkers and emerging therapies for chemotherapy resistant TNBC. Int J Mol Sci. 2022;23(3):1665. https://doi.org/10.3390/ijms23031665
-
Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer.
2005;5(4):275-84. https://doi.org/10.1038/NRC1590
-
Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, X Yang S, Ivy S P. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol.2015;12(8):445-64. https://doi.org/10.1038/nrclinonc.2015.61
-
Patel SA, Ndabahaliye A, Lim PK, Milton R, Rameshwar P. Challenges in the development of future treatments for breast cancer stem cells. Breast Cancer (Dove Med Press). 2010; 2:1-11. PMCID: PMC3004231
-
Makena MR, Ranjan A, Thirumala V, Reddy AP. Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2020; 1;1866(4):165339. https://doi.org/10.1016/j.bbadis.2018.11.015
-
Wu HJ, Chu PY. Epigenetic regulation of breast cancer stem cells contributing to carcinogenesis and therapeutic implications. Int J Mol Sci. 2021;22(15):8113. https://doi.org/10.3390/IJMS22158113
-
Verona F, Pantina V D, Modica C, Lo Iacono M, D'Accardo C, Porcelli G, Cricchio D, Turdo A, Gaggianesi M, Di Franco S, Todaro M, Veschi V, Stassi G. Targeting epigenetic alterations in cancer stem cells. Front Mol Med.2022:2:1011882. https://doi.org/10.3389/FMMED.2022.1011882
-
Suraweera A, O’Byrne KJ, Richard DJ. Epigenetic drugs in cancer therapy. Cancer Metastasis Rev. 2025;44:37. https://doi.org/10.1007/S10555-025-10253-7
-
Gonzalez ME, DuPrie ML, Krueger H, Merajver SD, Ventura AC, Toy KA, Kleer CG. Histone methyltransferase EZH2 induces Akt-dependent genomic instability and BRCA1 inhibition in breast cancer. Cancer Res. 2011; 71 (6): 2360–2370. https://doi.org/10.1158/0008-5472.CAN-10-1933
-
Sun F, Chan E, Wu Z, Yang X, Marquez VE, Yu Q. Combinatorial pharmacologic approaches target EZH2-mediated gene repression in breast cancer cells. Mol Cancer Ther. 2009; 8(12):3191-3202 https://doi.org/10.1158/1535-7163.mct-09-0479
-
Fiskus W, Wang Y, Sreekumar A, Buckley KM, Shi H, Jillella A, Ustun C, Rao R, Fernandez P,Chen J, Balusu R, Koul S, Atadja P, Marquez V E,Bhalla K N. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 2009; 114 (13): 2733–2743.https://doi.org/10.1182/blood-2009-03-213496
-
Yu J, Liu D, Yuan Y, Sun C, Su Z. Rethinking MYC inhibition: A multi-dimensional approach to overcome cancer’s master regulator. Front Cell Dev Biol. 2025;13:1601975. https://doi.org/10.3389/fcell.2025.1601975
-
Duan Y, Liu Z, Wang Q, Zhang J, Liu J, Zhang Z, Li C. Targeting MYC: Multidimensional regulation and therapeutic strategies in oncology. Genes & Diseases. 2025;12(4):101435. https://doi.org/10.1016/j.gendis.2024.101435
-
Bouvard C, Lim SM, Ludka J, Yazdani N, Woods AK, Chatterjee AK, Schultz P G, Shoutian Z. Small molecule selectively suppresses MYC transcription in cancer cells. Proc Natl Acad Sci U S A. 2017;114(13):3497-3502. https://doi.org/10.1073/pnas.1702663114
-
Jha RK, Kouzine F, Levens D. MYC function and regulation in physiological perspective. Front Cell Dev Biol. 2023;11:1268275. https://doi.org/10.3389/fcell.2023.1268275
-
Tahamtani Y, Azarnia M, Farrokhi A, Moradmand A, Mirshahvaladi S, Aghdami N, Baharvand H. Stauprimide priming of human embryonic stem cells toward definitive endoderm. Cell J. 2014; 16(1):63-72. PMCID: PMC3933440
-
Antonsson Andreas, Persson L J. Induction of apoptosis by staurosporine involves the inhibition of expression of the major cell cycle proteins at the G(2)/M checkpoint accompanied by alterations in Erk and Akt kinase activities. Anticancer Res. 2009; 29(8):2893- 2898. PMID: 19661292
-
Liu Y, Yang Q. The roles of EZH2 in cancer and its inhibitors. Med Oncol. 2023; 40(6):167 https://doi.org/10.1007/S12032-023-02025-6
-
Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006; 58(3):621-81. https://doi.org/10.1124/PR.58.3.10
-
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001;25:402–408. https://doi.org/10.1006/meth.2001.1262
-
Kang Z, Wang J, Liu J, Du L, Liu X. Epigenetic modifications in breast cancer: from immune escape mechanisms to therapeutic target discovery. Front Immunol. 2025;16:1584087. https://doi.org/10.3389/fimmu.2025.1584087
-
Tan J, Yang X, Zhuang L, Jiang X, Chen W, Puay LL, Karuturi RKM, Boon Ooi Tan P, Liu T E, Yu Q. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 2007; 21(9):1050-63. https://doi.org/10.1101/GAD.1524107
-
Hayden A, Johnson PWM, Packham G, Crabb SJ. S-adenosylhomocysteine hydrolase inhibition by 3-deazaneplanocin A analogues induces anti-cancer effects in breast cancer cell lines and synergy with both histone deacetylase and HER2 inhibition. Breast Cancer Res Treat. 2011; 127(1):109-119. DOI: 10.1007/s10549-010-0982-0
-
De La Rosa J, Urdiciain A, Zazpe I, Zelaya M V., Meléndez B, Rey JA, Idoate M A, Castresana J S. The synergistic effect of DZ-NEP, panobinostat and temozolomide reduces clonogenicity and induces apoptosis in glioblastoma cells. Int J Oncol. 2020; 56(1):283-300. https://doi.org/10.3892/IJO.2019.4905
-
Gallala H, Winter J, Veit N, Nowak M, Perner S, Courts C, Kraus D, Janzen V, Probstmeier R. Staurosporine analogs promote distinct patterns of process outgrowth and polyploidy in small cell lung carcinoma cells. Tumor Biology. 2015; 36 (4):2725-2735. DOI: 10.1007/s13277-014-2897-6
-
Kikuchi J, Takashina T, Kinoshita I, Kikuchi E, Shimizu Y, Sakakibara-Konishi J, Oizumi S, Marquez V E, Nishimura M, Dosaka-Akita H. Epigenetic therapy with 3-deazaneplanocin A, an inhibitor of the histone methyltransferase EZH2, inhibits growth of non-small cell lung cancer cells. Lung Cancer. 2012 ;78(2):138-143. https://doi.org/10.1016/j.lungcan.2012.08.003
-
Zhang K, Sun X, Zhou X, Han L, Chen L, Shi Z, Zhang A, Ye M, Wang Q, Liu C, Wei J, Ren Y, Yang J, Zhang J, Pu P, Li M, Kang C. Long non-coding RNA HOTAIR promotes glioblastoma cell cycle progression in an EZH2 dependent manner. Oncotarget 2015; 6(1):537-546. https://doi.org/10.18632/oncotarget.2681
-
Girard N, Bazille C, Lhuissier E, Benateau H, Llombart-Bosch A, Boumediene K, Bauge C. 3-Deazaneplanocin A (DZNep), an inhibitor of the histone methyltransferase EZH2, induces apoptosis and reduces cell migration in chondrosarcoma cells. PLoS One 2014; 9(5):e98176. https://doi.org/10.1371/journal.pone.0098176
-
Hibino S, Saito Y, Muramatsu T, Otani A, Kasai Y, Kimura M, Saito H. Inhibitors of enhancer of zeste homolog 2 (EZH2) activate tumor-suppressor microRNAs in human cancer cells. Oncogenesis 2014; 3(5):e104. https://doi.org/10.1038/oncsis.2014.17
-
Pitolli C, Wang Y, Mancini M, Shi Y, Melino G, Amelio I. Do mutations turn p53 into an oncogene? Int J Mol Sci. 2019; 20(24):6241.https://doi.org/10.3390/IJMS20246241
Investigation of anti-cancer efficiency of DZNep and Stauprimide combination in breast cancer
Year 2025,
Volume: 15 Issue: 4, 1 - 11
Çağlar Çelebi
,
Tuğçe Balcı Okcanoğlu
,
Çağla Kayabaşı
,
Besra Özmen Yelken
,
Aycan Aşık
,
Roya Gasımlı
,
Eda Tayfur
,
Cumhur Gündüz
Abstract
Objevtive: Breast cancer represents a significant clinical challenge due to tumor heterogeneity and the presence of therapy-resistant cancer stem cells (CSCs). The combination of epigenetic modulators and differentiation-inducing agents has emerged as a promising therapeutic strategy. In this study, we aimed to evaluate the anticancer effects of combining the methyltransferase inhibitor 3-Deazaneplanocin A (DZNep) and the MYC transcription inhibitor Stauprimide on breast cancer cell lines and breast cancer stem cells (BCSCs).
Methods: Cytotoxicity was determined by real-time cell analysis (RTCA) to calculate IC₅₀ values and evaluate the synergistic potential of the combination using isobologram analyses. Apoptosis induction and cell cycle distribution were assessed via flow cytometry using Annexin V-FITC/PI staining and DNA content analysis, respectively. Cell migration was evaluated using wound-healing assays. Additionally, quantitative RT-PCR was performed to analyze expression changes in key apoptosis- and cell cycle-related genes following treatment.
Results: The combination of DZNep and Stauprimide (1:1 ratio) demonstrated significant synergistic cytotoxicity in MCF-7 (luminal A) and MDA-MB-231 (triple-negative) breast cancer cells, substantially reducing effective doses of both agents (combination index values of 0.671 and 0.134, respectively). Treatment markedly induced apoptosis, triggered cell cycle arrest predominantly at G2/M and G0/G1 phases, increased polyploidy, and significantly inhibited migration. Notably, the combination selectively induced apoptosis and modulated gene expression (e.g., TP53 and p27 upregulation) in BCSCs, while exhibiting minimal toxicity towards the normal mammary epithelial cell line, MCF-10A. The combination of DZNep and Stauprimide exerts potent anticancer effects by selectively inducing apoptosis, cell cycle arrest, and suppressing migration in breast cancer cells, including CSC populations.
Conclusion: These findings suggest translational potential for preventing recurrence and metastasis, positioning this therapeutic strategy as a promising candidate for further validation in preclinical and clinical studies.
References
-
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. https://doi.org/10.3322/CAAC.21660
-
World Health Organization.Global Breast Cancer Initiative Implementation Framework. Published [2023]. https://iris.who.int/bitstream/handle/10665/365784/9789240067134-eng.pdf
-
Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: A critical review. J Clin Oncol. 2008; 20;26(15):2568-81. https://doi.org/10.1200/JCO.2007.13.1748
-
Perou CM, Sørile T, Eisen MB, Van De Rijn M, Jeffrey SS, Ress CA, Pollack J R, Ross D T, Johnsen H, Akslen L A, Fluge O, Pergamenschikov A, Williams C, Zhu S X, Lønning P E, Børresen-Dale A L, Brown P O, Botstein D. Molecular portraits of human breast tumours. Nature. 2000; 406(6797):747-52. https://doi.org/10.1038/35021093
-
Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, S Wicha M, Dontu G. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555-67. https://doi.org/10.1016/j.stem.2007.08.014
-
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983-8. https://doi.org/10.1073/pnas.0530291100
-
Visvader JE, Lindeman GJ. Cancer stem cells: Current status and evolving complexities. Cell Stem Cell. 2012;10(6):717-728. https://doi.org/10.1016/j.stem.2012.05.007
-
Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif. 2003;36 (Suppl 1):59-72. https://doi.org/10.1046/J.1365-2184.36.S.1.6.X
-
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-11. https://doi.org/10.1038/35102167
-
Ferrari P, Scatena C, Ghilli M, Bargagna I, Lorenzini G, Nicolini A. Molecular mechanisms, biomarkers and emerging therapies for chemotherapy resistant TNBC. Int J Mol Sci. 2022;23(3):1665. https://doi.org/10.3390/ijms23031665
-
Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer.
2005;5(4):275-84. https://doi.org/10.1038/NRC1590
-
Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, X Yang S, Ivy S P. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol.2015;12(8):445-64. https://doi.org/10.1038/nrclinonc.2015.61
-
Patel SA, Ndabahaliye A, Lim PK, Milton R, Rameshwar P. Challenges in the development of future treatments for breast cancer stem cells. Breast Cancer (Dove Med Press). 2010; 2:1-11. PMCID: PMC3004231
-
Makena MR, Ranjan A, Thirumala V, Reddy AP. Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2020; 1;1866(4):165339. https://doi.org/10.1016/j.bbadis.2018.11.015
-
Wu HJ, Chu PY. Epigenetic regulation of breast cancer stem cells contributing to carcinogenesis and therapeutic implications. Int J Mol Sci. 2021;22(15):8113. https://doi.org/10.3390/IJMS22158113
-
Verona F, Pantina V D, Modica C, Lo Iacono M, D'Accardo C, Porcelli G, Cricchio D, Turdo A, Gaggianesi M, Di Franco S, Todaro M, Veschi V, Stassi G. Targeting epigenetic alterations in cancer stem cells. Front Mol Med.2022:2:1011882. https://doi.org/10.3389/FMMED.2022.1011882
-
Suraweera A, O’Byrne KJ, Richard DJ. Epigenetic drugs in cancer therapy. Cancer Metastasis Rev. 2025;44:37. https://doi.org/10.1007/S10555-025-10253-7
-
Gonzalez ME, DuPrie ML, Krueger H, Merajver SD, Ventura AC, Toy KA, Kleer CG. Histone methyltransferase EZH2 induces Akt-dependent genomic instability and BRCA1 inhibition in breast cancer. Cancer Res. 2011; 71 (6): 2360–2370. https://doi.org/10.1158/0008-5472.CAN-10-1933
-
Sun F, Chan E, Wu Z, Yang X, Marquez VE, Yu Q. Combinatorial pharmacologic approaches target EZH2-mediated gene repression in breast cancer cells. Mol Cancer Ther. 2009; 8(12):3191-3202 https://doi.org/10.1158/1535-7163.mct-09-0479
-
Fiskus W, Wang Y, Sreekumar A, Buckley KM, Shi H, Jillella A, Ustun C, Rao R, Fernandez P,Chen J, Balusu R, Koul S, Atadja P, Marquez V E,Bhalla K N. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 2009; 114 (13): 2733–2743.https://doi.org/10.1182/blood-2009-03-213496
-
Yu J, Liu D, Yuan Y, Sun C, Su Z. Rethinking MYC inhibition: A multi-dimensional approach to overcome cancer’s master regulator. Front Cell Dev Biol. 2025;13:1601975. https://doi.org/10.3389/fcell.2025.1601975
-
Duan Y, Liu Z, Wang Q, Zhang J, Liu J, Zhang Z, Li C. Targeting MYC: Multidimensional regulation and therapeutic strategies in oncology. Genes & Diseases. 2025;12(4):101435. https://doi.org/10.1016/j.gendis.2024.101435
-
Bouvard C, Lim SM, Ludka J, Yazdani N, Woods AK, Chatterjee AK, Schultz P G, Shoutian Z. Small molecule selectively suppresses MYC transcription in cancer cells. Proc Natl Acad Sci U S A. 2017;114(13):3497-3502. https://doi.org/10.1073/pnas.1702663114
-
Jha RK, Kouzine F, Levens D. MYC function and regulation in physiological perspective. Front Cell Dev Biol. 2023;11:1268275. https://doi.org/10.3389/fcell.2023.1268275
-
Tahamtani Y, Azarnia M, Farrokhi A, Moradmand A, Mirshahvaladi S, Aghdami N, Baharvand H. Stauprimide priming of human embryonic stem cells toward definitive endoderm. Cell J. 2014; 16(1):63-72. PMCID: PMC3933440
-
Antonsson Andreas, Persson L J. Induction of apoptosis by staurosporine involves the inhibition of expression of the major cell cycle proteins at the G(2)/M checkpoint accompanied by alterations in Erk and Akt kinase activities. Anticancer Res. 2009; 29(8):2893- 2898. PMID: 19661292
-
Liu Y, Yang Q. The roles of EZH2 in cancer and its inhibitors. Med Oncol. 2023; 40(6):167 https://doi.org/10.1007/S12032-023-02025-6
-
Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006; 58(3):621-81. https://doi.org/10.1124/PR.58.3.10
-
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001;25:402–408. https://doi.org/10.1006/meth.2001.1262
-
Kang Z, Wang J, Liu J, Du L, Liu X. Epigenetic modifications in breast cancer: from immune escape mechanisms to therapeutic target discovery. Front Immunol. 2025;16:1584087. https://doi.org/10.3389/fimmu.2025.1584087
-
Tan J, Yang X, Zhuang L, Jiang X, Chen W, Puay LL, Karuturi RKM, Boon Ooi Tan P, Liu T E, Yu Q. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 2007; 21(9):1050-63. https://doi.org/10.1101/GAD.1524107
-
Hayden A, Johnson PWM, Packham G, Crabb SJ. S-adenosylhomocysteine hydrolase inhibition by 3-deazaneplanocin A analogues induces anti-cancer effects in breast cancer cell lines and synergy with both histone deacetylase and HER2 inhibition. Breast Cancer Res Treat. 2011; 127(1):109-119. DOI: 10.1007/s10549-010-0982-0
-
De La Rosa J, Urdiciain A, Zazpe I, Zelaya M V., Meléndez B, Rey JA, Idoate M A, Castresana J S. The synergistic effect of DZ-NEP, panobinostat and temozolomide reduces clonogenicity and induces apoptosis in glioblastoma cells. Int J Oncol. 2020; 56(1):283-300. https://doi.org/10.3892/IJO.2019.4905
-
Gallala H, Winter J, Veit N, Nowak M, Perner S, Courts C, Kraus D, Janzen V, Probstmeier R. Staurosporine analogs promote distinct patterns of process outgrowth and polyploidy in small cell lung carcinoma cells. Tumor Biology. 2015; 36 (4):2725-2735. DOI: 10.1007/s13277-014-2897-6
-
Kikuchi J, Takashina T, Kinoshita I, Kikuchi E, Shimizu Y, Sakakibara-Konishi J, Oizumi S, Marquez V E, Nishimura M, Dosaka-Akita H. Epigenetic therapy with 3-deazaneplanocin A, an inhibitor of the histone methyltransferase EZH2, inhibits growth of non-small cell lung cancer cells. Lung Cancer. 2012 ;78(2):138-143. https://doi.org/10.1016/j.lungcan.2012.08.003
-
Zhang K, Sun X, Zhou X, Han L, Chen L, Shi Z, Zhang A, Ye M, Wang Q, Liu C, Wei J, Ren Y, Yang J, Zhang J, Pu P, Li M, Kang C. Long non-coding RNA HOTAIR promotes glioblastoma cell cycle progression in an EZH2 dependent manner. Oncotarget 2015; 6(1):537-546. https://doi.org/10.18632/oncotarget.2681
-
Girard N, Bazille C, Lhuissier E, Benateau H, Llombart-Bosch A, Boumediene K, Bauge C. 3-Deazaneplanocin A (DZNep), an inhibitor of the histone methyltransferase EZH2, induces apoptosis and reduces cell migration in chondrosarcoma cells. PLoS One 2014; 9(5):e98176. https://doi.org/10.1371/journal.pone.0098176
-
Hibino S, Saito Y, Muramatsu T, Otani A, Kasai Y, Kimura M, Saito H. Inhibitors of enhancer of zeste homolog 2 (EZH2) activate tumor-suppressor microRNAs in human cancer cells. Oncogenesis 2014; 3(5):e104. https://doi.org/10.1038/oncsis.2014.17
-
Pitolli C, Wang Y, Mancini M, Shi Y, Melino G, Amelio I. Do mutations turn p53 into an oncogene? Int J Mol Sci. 2019; 20(24):6241.https://doi.org/10.3390/IJMS20246241