Research Article
BibTex RIS Cite
Year 2022, , 141 - 153, 15.09.2022
https://doi.org/10.33205/cma.1110550

Abstract

References

  • M. W. Alomari: On the generalized mixed Schwarz inequality, Proc. Inst. Math. Mech., 46 (1) (2020), 3–15.
  • M. W. Alomari: Refinements of some numerical radius inequalities for Hilbert space operators, Linear Multilinear Algebra, 69 (7) (2021), 1208–1223.
  • M. W. Alomari: Improvements of some numerical radius inequalities, Azerb. J. Math., 12 (1) (2022), 124–137.
  • M. Bakherad: Some Berezin number inequalities for operators matrices, Czechoslovak Math. J., 68 (143) (2018), 997–1009.
  • M. Bakherad, M. T. Garayev: Berezin number inequalities for operators, Concr. Oper., 6 (1) (2019), 33–43.
  • M. Bakherad, M. Hajmohamadi, R. Lashkaripour and S. Sahoo: Some extensions of Berezin number inequalities on operators, Rocky Mountain J. Math., 51 (6) (2021), 1941–1951.
  • F. A. Berezin: Covariant and contravariant symbols for operators, Math. USSR-Izvestiya, 6 (1972), 1117–1151.
  • S. S. Dragomir: Inequalities for the numerical radius of linear operators in Hilbert spaces, SpringerBriefs in Mathematics (2013).
  • S. S. Dragomir: Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Tamkang J. Math., 39 (2008), 1–7.
  • S. S. Dragomir: Some Inequalities generalizing Kato’s and Furuta’s results, Filomat, 28 (1) (2014), 179–195.
  • T. Furuta: An extension of the Heinz-Kato theorem, Proc. Amer. Math. Soc., 120 (3) (1994), 785–787.
  • M. T. Garayev, M. W. Alomari: Inequalities for the Berezin number of operators and related questions, Complex Anal. Oper. Theory, 15, 30 (2021).
  • M. Garayev, F. Bouzeffour, M. Gürdal and C. M. Yangöz: Refinements of Kantorovich type, Schwarz and Berezin number inequalities, Extracta Math., 35 (2020), 1–20.
  • M. T. Garayev, M. Gürdal and A. Okudan: Hardy-Hilbert’s inequality and a power inequality for Berezin numbers for operators, Math. Inequal. Appl., 19 (2016), 883–891.
  • M. T. Garayev, M. Gürdal and S. Saltan: Hardy type inequaltiy for reproducing kernel Hilbert space operators and related problems, Positivity, 21 (6) (2017), 1615–1623.
  • M. T. Garayev, H. Guedri, M. Gürdal and G. M. Alsahli: On some problems for operators on the reproducing kernel Hilbert space, Linear Multilinear Algebra, 69 (11) (2021), 2059–2077.
  • K. E. Gustafson, D. K. M. Rao: Numerical Range, Springer-Verlag, New York (1997).
  • M. Hajmohamadi, R. Lashkaripour and M. Bakherad: Improvements of Berezin number inequalities, Linear Multilinear Algebra, 68 (6) (2020), 1218–1229.
  • P. R. Halmos: A Hilbert space problem book, Van Nostrand Company, Inc., Princeton (1967).
  • M. B. Huban, H. Ba¸saran and M. Gürdal: New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct., 12 (3) (2021), 1–12.
  • M. T. Karaev: Berezin set and Berezin number of operators and their applications, The 8th Workshop on Numerical Ranges and Numerical Radii WONRA -06, Bremen (Germany) (2006), p.14.
  • M. T. Karaev: Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal., 238 (2006), 181–192.
  • M. T. Karaev: Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7 (2013), 983–1018.
  • F. Kittaneh: A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158 (2003), 11–17.
  • F. Kittaneh: Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (1) (2005), 73–80
  • F. Kittaneh, Y. Manasrah: Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl., 361 (1) (2010), 262–269.
  • T. Kato: Notes on some inequalities for linear operators, Math. Ann., 125 (1952), 208–212.
  • W. Reid: Symmetrizable completely continuous linear transformations in Hilbert space, Duke Math., 18 (1951), 41–56.
  • S. Sahoo, M. Bakherad: Some extended Berezin number inequalities, Filomat, 35 (6) (2021), 2043–2053.
  • M. Sattari, M. S. Moslehian and T. Yamazaki: Some generalized numerical radius inequalities for Hilbert space operators, Linear Algebra Appl., 470 (2015), 216–227.
  • A. Sheikhhosseini, M. S. Moslehian and K. Shebrawi: Inequalities for generalized Euclidean operator radius via Young’s inequality, J. Math. Anal. Appl., 445 (2) (2017), 1516–1529.
  • R. Tapdigoglu: New Berezin symbol inequalities for operators on the reproducing kernel Hilbert space, Oper. Matrices, 15 (3) (2021), 1445–1460.
  • U. Yamancı, M. Gürdal and M. T. Garayev: Berezin number inequality for convex function in reproducing kernel Hilbert space, Filomat, 31 (2017), 5711–5717.
  • U. Yamancı, R. Tunç and M. Gürdal: Berezin numbers, Grüss type inequalities and their applications, Bull. Malays. Math. Sci. Soc., 43 (2020), 2287–2296.
  • T. Yamazaki: On upper and lower bounds of the numerical radius and an equality condition, Studia Math., 178 (2007), 83–89.

Improvements of some Berezin radius inequalities

Year 2022, , 141 - 153, 15.09.2022
https://doi.org/10.33205/cma.1110550

Abstract

The Berezin transform $\widetilde{A}$ and the Berezin radius of an operator $A$ on the reproducing kernel Hilbert space over some set $Q$ with normalized reproducing kernel $k_{\eta}:=\dfrac{K_{\eta}}{\left\Vert K_{\eta}\right\Vert}$ are defined, respectively, by $\widetilde{A}(\eta)=\left\langle {A}k_{\eta},k_{\eta}\right\rangle$, $\eta\in Q$ and $\mathrm{ber} (A):=\sup_{\eta\in Q}\left\vert \widetilde{A}{(\eta)}\right\vert$. A simple comparison of these properties produces the inequalities $\dfrac{1}{4}\left\Vert A^{\ast}A+AA^{\ast}\right\Vert \leq\mathrm{ber}^{2}\left( A\right) \leq\dfrac{1}{2}\left\Vert A^{\ast}A+AA^{\ast}\right\Vert $. In this research, we investigate other inequalities that are related to them. In particular, for $A\in\mathcal{L}\left( \mathcal{H}\left(Q\right) \right) $ we prove that
$\mathrm{ber}^{2}\left( A\right) \leq\dfrac{1}{2}\left\Vert A^{\ast}A+AA^{\ast}\right\Vert _{\mathrm{ber}}-\dfrac{1}{4}\inf_{\eta\in Q}\left(\left( \widetilde{\left\vert A\right\vert }\left( \eta\right)\right)-\left( \widetilde{\left\vert A^{\ast}\right\vert }\left( \eta\right)\right) \right) ^{2}.$

References

  • M. W. Alomari: On the generalized mixed Schwarz inequality, Proc. Inst. Math. Mech., 46 (1) (2020), 3–15.
  • M. W. Alomari: Refinements of some numerical radius inequalities for Hilbert space operators, Linear Multilinear Algebra, 69 (7) (2021), 1208–1223.
  • M. W. Alomari: Improvements of some numerical radius inequalities, Azerb. J. Math., 12 (1) (2022), 124–137.
  • M. Bakherad: Some Berezin number inequalities for operators matrices, Czechoslovak Math. J., 68 (143) (2018), 997–1009.
  • M. Bakherad, M. T. Garayev: Berezin number inequalities for operators, Concr. Oper., 6 (1) (2019), 33–43.
  • M. Bakherad, M. Hajmohamadi, R. Lashkaripour and S. Sahoo: Some extensions of Berezin number inequalities on operators, Rocky Mountain J. Math., 51 (6) (2021), 1941–1951.
  • F. A. Berezin: Covariant and contravariant symbols for operators, Math. USSR-Izvestiya, 6 (1972), 1117–1151.
  • S. S. Dragomir: Inequalities for the numerical radius of linear operators in Hilbert spaces, SpringerBriefs in Mathematics (2013).
  • S. S. Dragomir: Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Tamkang J. Math., 39 (2008), 1–7.
  • S. S. Dragomir: Some Inequalities generalizing Kato’s and Furuta’s results, Filomat, 28 (1) (2014), 179–195.
  • T. Furuta: An extension of the Heinz-Kato theorem, Proc. Amer. Math. Soc., 120 (3) (1994), 785–787.
  • M. T. Garayev, M. W. Alomari: Inequalities for the Berezin number of operators and related questions, Complex Anal. Oper. Theory, 15, 30 (2021).
  • M. Garayev, F. Bouzeffour, M. Gürdal and C. M. Yangöz: Refinements of Kantorovich type, Schwarz and Berezin number inequalities, Extracta Math., 35 (2020), 1–20.
  • M. T. Garayev, M. Gürdal and A. Okudan: Hardy-Hilbert’s inequality and a power inequality for Berezin numbers for operators, Math. Inequal. Appl., 19 (2016), 883–891.
  • M. T. Garayev, M. Gürdal and S. Saltan: Hardy type inequaltiy for reproducing kernel Hilbert space operators and related problems, Positivity, 21 (6) (2017), 1615–1623.
  • M. T. Garayev, H. Guedri, M. Gürdal and G. M. Alsahli: On some problems for operators on the reproducing kernel Hilbert space, Linear Multilinear Algebra, 69 (11) (2021), 2059–2077.
  • K. E. Gustafson, D. K. M. Rao: Numerical Range, Springer-Verlag, New York (1997).
  • M. Hajmohamadi, R. Lashkaripour and M. Bakherad: Improvements of Berezin number inequalities, Linear Multilinear Algebra, 68 (6) (2020), 1218–1229.
  • P. R. Halmos: A Hilbert space problem book, Van Nostrand Company, Inc., Princeton (1967).
  • M. B. Huban, H. Ba¸saran and M. Gürdal: New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct., 12 (3) (2021), 1–12.
  • M. T. Karaev: Berezin set and Berezin number of operators and their applications, The 8th Workshop on Numerical Ranges and Numerical Radii WONRA -06, Bremen (Germany) (2006), p.14.
  • M. T. Karaev: Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal., 238 (2006), 181–192.
  • M. T. Karaev: Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7 (2013), 983–1018.
  • F. Kittaneh: A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158 (2003), 11–17.
  • F. Kittaneh: Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (1) (2005), 73–80
  • F. Kittaneh, Y. Manasrah: Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl., 361 (1) (2010), 262–269.
  • T. Kato: Notes on some inequalities for linear operators, Math. Ann., 125 (1952), 208–212.
  • W. Reid: Symmetrizable completely continuous linear transformations in Hilbert space, Duke Math., 18 (1951), 41–56.
  • S. Sahoo, M. Bakherad: Some extended Berezin number inequalities, Filomat, 35 (6) (2021), 2043–2053.
  • M. Sattari, M. S. Moslehian and T. Yamazaki: Some generalized numerical radius inequalities for Hilbert space operators, Linear Algebra Appl., 470 (2015), 216–227.
  • A. Sheikhhosseini, M. S. Moslehian and K. Shebrawi: Inequalities for generalized Euclidean operator radius via Young’s inequality, J. Math. Anal. Appl., 445 (2) (2017), 1516–1529.
  • R. Tapdigoglu: New Berezin symbol inequalities for operators on the reproducing kernel Hilbert space, Oper. Matrices, 15 (3) (2021), 1445–1460.
  • U. Yamancı, M. Gürdal and M. T. Garayev: Berezin number inequality for convex function in reproducing kernel Hilbert space, Filomat, 31 (2017), 5711–5717.
  • U. Yamancı, R. Tunç and M. Gürdal: Berezin numbers, Grüss type inequalities and their applications, Bull. Malays. Math. Sci. Soc., 43 (2020), 2287–2296.
  • T. Yamazaki: On upper and lower bounds of the numerical radius and an equality condition, Studia Math., 178 (2007), 83–89.
There are 35 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mehmet Gürdal 0000-0003-0866-1869

Mohammad Alomarı 0000-0002-6696-9119

Publication Date September 15, 2022
Published in Issue Year 2022

Cite

APA Gürdal, M., & Alomarı, M. (2022). Improvements of some Berezin radius inequalities. Constructive Mathematical Analysis, 5(3), 141-153. https://doi.org/10.33205/cma.1110550
AMA Gürdal M, Alomarı M. Improvements of some Berezin radius inequalities. CMA. September 2022;5(3):141-153. doi:10.33205/cma.1110550
Chicago Gürdal, Mehmet, and Mohammad Alomarı. “Improvements of Some Berezin Radius Inequalities”. Constructive Mathematical Analysis 5, no. 3 (September 2022): 141-53. https://doi.org/10.33205/cma.1110550.
EndNote Gürdal M, Alomarı M (September 1, 2022) Improvements of some Berezin radius inequalities. Constructive Mathematical Analysis 5 3 141–153.
IEEE M. Gürdal and M. Alomarı, “Improvements of some Berezin radius inequalities”, CMA, vol. 5, no. 3, pp. 141–153, 2022, doi: 10.33205/cma.1110550.
ISNAD Gürdal, Mehmet - Alomarı, Mohammad. “Improvements of Some Berezin Radius Inequalities”. Constructive Mathematical Analysis 5/3 (September 2022), 141-153. https://doi.org/10.33205/cma.1110550.
JAMA Gürdal M, Alomarı M. Improvements of some Berezin radius inequalities. CMA. 2022;5:141–153.
MLA Gürdal, Mehmet and Mohammad Alomarı. “Improvements of Some Berezin Radius Inequalities”. Constructive Mathematical Analysis, vol. 5, no. 3, 2022, pp. 141-53, doi:10.33205/cma.1110550.
Vancouver Gürdal M, Alomarı M. Improvements of some Berezin radius inequalities. CMA. 2022;5(3):141-53.