Research Article
BibTex RIS Cite

Solutions for nonhomogeneous degenerate quasilinear anisotropic problems

Year 2024, , 134 - 149, 15.09.2024
https://doi.org/10.33205/cma.1504337

Abstract

In this article, we consider a class of nonlinear elliptic problems, where anisotropic leading differential operator incorporates the unbounded coefficients and the nonlinear term is a convection term. We prove the solvability of degenerate Dirichlet problem with convection, i.e. the existence of at least one bounded weak solution via the theory of pseudomonotone operators, Nemytskii-type operator and a priori estimate in the degenerate anisotropic Sobolev spaces.

References

  • Y. Ahakkoud, J. Bennouna and M. Elmassoudi: Existence of a renormalized solutions for parabolic-elliptic system in anisotropic Orlicz-Sobolev spaces, Rend. Circ. Mat. Palermo, II. Ser (2024).
  • M. Allalou, M. El Ouaarabi and A. Raji: On a class of nonhomogeneous anisotropic elliptic problem with variable exponents, Rend. Circ. Mat. Palermo, II. Ser (2024).
  • M. Bohner, G. Caristi, A. Ghobadi and S. Heidarkhani: Three solutions for discrete anisotropic Kirchhoff-type problems, Dem. Math., 56 (1) (2023), Article ID: 20220209.
  • B. Brandolini, F. C. Cîrstea: Singular anisotropic elliptic equations with gradient-dependent lower order terms, Nonlinear Differ. Equ. Appl. NoDEA, 30 (2023), Article ID:58.
  • B. Brandolini, F.C. Cîrstea: Anisotropic elliptic equations with gradient-dependent lower order terms in L1 data, Mathematics in Engineering, 5 (4) (2023), 1–33.
  • S. Carl, V. K. Le and D. Motreanu: Nonsmooth variational problems and their inequalities, in: Comparison Principles and Applications, Springer, New York (2007).
  • S. Ciani, V. Vespri: On Hölder continuity and equivalent formulation of intrinsic Harnack estimates for an anisotropic parabolic degenerate prototype equation, Constr. Math. Anal., 4 (1) (2021), 93–103.
  • G. di Blasio, F. Feo and G. Zecca: Regularity results for local solutions to some anisotropic elliptic equations, Isr. J. Math., 261 (2023), 1–35.
  • G. di Blasio, F. Feo and G. Zecca: Existence and uniqueness of solutions to some anisotropic elliptic equations with singular convection term, https://doi.org/10.48550/arXiv.2307.13564
  • P. Drabek, A. Kufner and F. Nicolosi: Quasilinear Eliptic Equations with Degenerations and Singularities, De Gruyter Series in Nonlinear Analysis and Applications, 5; Walter de Gruyter & Co.: Berlin, Germany (1997).
  • X. Fan: Anisotropic variable exponent Sobolev spaces and −→p (x)-Laplacian equations, Complex Var. Elliptic Equ., 56 (79) (2011), 623–642.
  • I. Fragala, F. Gazzola and B. Kawohl: Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (5) (2004), 715–734.
  • V. Gutlyanskii, O. Nesmelova, V. Ryazanov and E. Yakubov: Toward the theory of semi-linear Beltrami equations, Constr. Math. Anal., 6 (3) (2023), 151–163.
  • M. Mih˘ailescu, G. Moro¸sanu: On an eigenvalue problem for an anisotropic elliptic equation involving variable exponents, Glasgow Math. J., 52 (2010), 517–527.
  • M. Mih˘ailescu, P. Pucci and V. D. R˘adulescu: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340 (2008), 687–698.
  • D. Motreanu: Degenerated and competing dirichlet problems with weights and convection, Axioms, 10 (4) (2021), Article ID: 271.
  • D. Motreanu, E. Tornatore: Quasilinear Dirichlet problems with degenerated p-Laplacian and convection term, Mathematics, 9 (2) (2021), Article ID: 139.
  • D. Motreanu, E. Tornatore: Nonhomogeneous degenerate quasilinear problems with convection, Nonlinear Anal. Real World Appl., 71 (2023), Article ID: 103800.
  • D. Motreanu, E. Tornatore: Dirichlet problems with anisotropic principal part involving unbounded coefficients, Electron. J. Differ. Equ., 2024 (11), 1–13.
  • V.A. Nghiem Thi, A.T. Vu, D.L. Le and V.N. Doan: On the source problem for the diffusion equations with conformable derivative, Modern Math. Methods, 2 (2) (2024), 55–64.
  • V. D. R˘adulescu: Isotropic and anisotropic double-phase problems: Old and new, Opuscula Math., 39 (2) (2019), 259–279.
  • J. Rákosník: Some remarks to anisotropic Sobolev spaces I, Beitr. Anal., 13 (1979), 55–68.
  • A. Razani: Nonstandard competing anisotropic (p, q)-Laplacians with convolution, Bound. Value Probl., 2022 (2022), Article ID:87.
  • A. Razani: Entire weak solutions for an anisotropic equation in the Heisenberg group, Proc. Amer. Math. Soc., 151 (11) (2023), 4771–4779.
  • A. Razani, G.S. Costa and G. M. Figueiredo: A positive solution for a weighted anisotropic p-Laplace equation involving vanishing potential, Mediterr. J. Math., 21 (2024), Article ID: 59.
  • A. Razani, G. M. Figueiredo: A positive solution for an anisotropic p&q-Laplacian, Discrete Contin. Dyn. Syst. Ser. S, 16 (6) (2023), 1629–1643.
  • A. Razani, G. M. Figueiredo: Existence of infinitely many solutions for an anisotropic equation using genus theory, Math. Methods Appl. Sci., 45 (12) (2022), 7591–7606.
  • A. Razani, G. M. Figueiredo: Degenerated and competing anisotropic (p, q)-Laplacians with weights, Appl. Anal., 102 (16) (2023), 4471–4488.
Year 2024, , 134 - 149, 15.09.2024
https://doi.org/10.33205/cma.1504337

Abstract

References

  • Y. Ahakkoud, J. Bennouna and M. Elmassoudi: Existence of a renormalized solutions for parabolic-elliptic system in anisotropic Orlicz-Sobolev spaces, Rend. Circ. Mat. Palermo, II. Ser (2024).
  • M. Allalou, M. El Ouaarabi and A. Raji: On a class of nonhomogeneous anisotropic elliptic problem with variable exponents, Rend. Circ. Mat. Palermo, II. Ser (2024).
  • M. Bohner, G. Caristi, A. Ghobadi and S. Heidarkhani: Three solutions for discrete anisotropic Kirchhoff-type problems, Dem. Math., 56 (1) (2023), Article ID: 20220209.
  • B. Brandolini, F. C. Cîrstea: Singular anisotropic elliptic equations with gradient-dependent lower order terms, Nonlinear Differ. Equ. Appl. NoDEA, 30 (2023), Article ID:58.
  • B. Brandolini, F.C. Cîrstea: Anisotropic elliptic equations with gradient-dependent lower order terms in L1 data, Mathematics in Engineering, 5 (4) (2023), 1–33.
  • S. Carl, V. K. Le and D. Motreanu: Nonsmooth variational problems and their inequalities, in: Comparison Principles and Applications, Springer, New York (2007).
  • S. Ciani, V. Vespri: On Hölder continuity and equivalent formulation of intrinsic Harnack estimates for an anisotropic parabolic degenerate prototype equation, Constr. Math. Anal., 4 (1) (2021), 93–103.
  • G. di Blasio, F. Feo and G. Zecca: Regularity results for local solutions to some anisotropic elliptic equations, Isr. J. Math., 261 (2023), 1–35.
  • G. di Blasio, F. Feo and G. Zecca: Existence and uniqueness of solutions to some anisotropic elliptic equations with singular convection term, https://doi.org/10.48550/arXiv.2307.13564
  • P. Drabek, A. Kufner and F. Nicolosi: Quasilinear Eliptic Equations with Degenerations and Singularities, De Gruyter Series in Nonlinear Analysis and Applications, 5; Walter de Gruyter & Co.: Berlin, Germany (1997).
  • X. Fan: Anisotropic variable exponent Sobolev spaces and −→p (x)-Laplacian equations, Complex Var. Elliptic Equ., 56 (79) (2011), 623–642.
  • I. Fragala, F. Gazzola and B. Kawohl: Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (5) (2004), 715–734.
  • V. Gutlyanskii, O. Nesmelova, V. Ryazanov and E. Yakubov: Toward the theory of semi-linear Beltrami equations, Constr. Math. Anal., 6 (3) (2023), 151–163.
  • M. Mih˘ailescu, G. Moro¸sanu: On an eigenvalue problem for an anisotropic elliptic equation involving variable exponents, Glasgow Math. J., 52 (2010), 517–527.
  • M. Mih˘ailescu, P. Pucci and V. D. R˘adulescu: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340 (2008), 687–698.
  • D. Motreanu: Degenerated and competing dirichlet problems with weights and convection, Axioms, 10 (4) (2021), Article ID: 271.
  • D. Motreanu, E. Tornatore: Quasilinear Dirichlet problems with degenerated p-Laplacian and convection term, Mathematics, 9 (2) (2021), Article ID: 139.
  • D. Motreanu, E. Tornatore: Nonhomogeneous degenerate quasilinear problems with convection, Nonlinear Anal. Real World Appl., 71 (2023), Article ID: 103800.
  • D. Motreanu, E. Tornatore: Dirichlet problems with anisotropic principal part involving unbounded coefficients, Electron. J. Differ. Equ., 2024 (11), 1–13.
  • V.A. Nghiem Thi, A.T. Vu, D.L. Le and V.N. Doan: On the source problem for the diffusion equations with conformable derivative, Modern Math. Methods, 2 (2) (2024), 55–64.
  • V. D. R˘adulescu: Isotropic and anisotropic double-phase problems: Old and new, Opuscula Math., 39 (2) (2019), 259–279.
  • J. Rákosník: Some remarks to anisotropic Sobolev spaces I, Beitr. Anal., 13 (1979), 55–68.
  • A. Razani: Nonstandard competing anisotropic (p, q)-Laplacians with convolution, Bound. Value Probl., 2022 (2022), Article ID:87.
  • A. Razani: Entire weak solutions for an anisotropic equation in the Heisenberg group, Proc. Amer. Math. Soc., 151 (11) (2023), 4771–4779.
  • A. Razani, G.S. Costa and G. M. Figueiredo: A positive solution for a weighted anisotropic p-Laplace equation involving vanishing potential, Mediterr. J. Math., 21 (2024), Article ID: 59.
  • A. Razani, G. M. Figueiredo: A positive solution for an anisotropic p&q-Laplacian, Discrete Contin. Dyn. Syst. Ser. S, 16 (6) (2023), 1629–1643.
  • A. Razani, G. M. Figueiredo: Existence of infinitely many solutions for an anisotropic equation using genus theory, Math. Methods Appl. Sci., 45 (12) (2022), 7591–7606.
  • A. Razani, G. M. Figueiredo: Degenerated and competing anisotropic (p, q)-Laplacians with weights, Appl. Anal., 102 (16) (2023), 4471–4488.
There are 28 citations in total.

Details

Primary Language English
Subjects Lie Groups, Harmonic and Fourier Analysis
Journal Section Articles
Authors

Abdolrahman Razani 0000-0002-3092-3530

Elisabetta Tornatore This is me 0000-0003-1446-5530

Early Pub Date September 11, 2024
Publication Date September 15, 2024
Submission Date June 24, 2024
Acceptance Date September 8, 2024
Published in Issue Year 2024

Cite

APA Razani, A., & Tornatore, E. (2024). Solutions for nonhomogeneous degenerate quasilinear anisotropic problems. Constructive Mathematical Analysis, 7(3), 134-149. https://doi.org/10.33205/cma.1504337
AMA Razani A, Tornatore E. Solutions for nonhomogeneous degenerate quasilinear anisotropic problems. CMA. September 2024;7(3):134-149. doi:10.33205/cma.1504337
Chicago Razani, Abdolrahman, and Elisabetta Tornatore. “Solutions for Nonhomogeneous Degenerate Quasilinear Anisotropic Problems”. Constructive Mathematical Analysis 7, no. 3 (September 2024): 134-49. https://doi.org/10.33205/cma.1504337.
EndNote Razani A, Tornatore E (September 1, 2024) Solutions for nonhomogeneous degenerate quasilinear anisotropic problems. Constructive Mathematical Analysis 7 3 134–149.
IEEE A. Razani and E. Tornatore, “Solutions for nonhomogeneous degenerate quasilinear anisotropic problems”, CMA, vol. 7, no. 3, pp. 134–149, 2024, doi: 10.33205/cma.1504337.
ISNAD Razani, Abdolrahman - Tornatore, Elisabetta. “Solutions for Nonhomogeneous Degenerate Quasilinear Anisotropic Problems”. Constructive Mathematical Analysis 7/3 (September 2024), 134-149. https://doi.org/10.33205/cma.1504337.
JAMA Razani A, Tornatore E. Solutions for nonhomogeneous degenerate quasilinear anisotropic problems. CMA. 2024;7:134–149.
MLA Razani, Abdolrahman and Elisabetta Tornatore. “Solutions for Nonhomogeneous Degenerate Quasilinear Anisotropic Problems”. Constructive Mathematical Analysis, vol. 7, no. 3, 2024, pp. 134-49, doi:10.33205/cma.1504337.
Vancouver Razani A, Tornatore E. Solutions for nonhomogeneous degenerate quasilinear anisotropic problems. CMA. 2024;7(3):134-49.