Research Article
BibTex RIS Cite
Year 2024, , 180 - 195, 15.12.2024
https://doi.org/10.33205/cma.1563047

Abstract

Project Number

BG-RRP-2.004-0008

References

  • A. M. Acu, P. Agrawal: Better approximation of functions by genuine Bernstein-Durrmeyer type operators, Carpathian J. Math., 35 (2) (2019), 125–136.
  • A. M. Acu, I. Rasa: New estimates for the differences of positive linear operators, Numer. Algorithms, 73 (3) (2016), 775–789.
  • H. Berens, Y. Xu: On Bernstein-Durrmeyer polynomials with Jacobi weights, In Approximation Theory and Functional Analysis, (Edited by C. K. Chui), pp. 25–46, Acad. Press, Boston (1991).
  • L. Beutel, H. Gonska and D. Kacsó: Variation-diminishing splines revised, In Proceedings of International Symposium on Numerical Analysis and Approximation Theory, (Edited by R. Trâmbi¸ta¸s), pp. 54–75, Presa Universitar˘a Clujean˘a, Cluj-Napoka (2002).
  • W. Chen: On the modified Bernstein-Durrmeyer operator, Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou (China), (1987).
  • Z. Ditzian, K. G. Ivanov: Strong converse inequalities, J. Anal. Math., 61 (1993), 61–111.
  • H. Gonska, R. P˘alt˘anea: Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions, Czechoslovak Math. J., 60 (135) (2010), 783–799.
  • H. Gonska, R. P˘alt˘anea: Quantitative convergence theorems for a class of Bernstein-Durrmeyer operators preserving linear functions, Ukrainian Math. J., 62 (2010), 913–922.
  • T. N. T. Goodman, A. Sharma: A modified Bernstein-Schoenberg operator, In Constructive Theory of Functions, Varna 1987, (Edited by Bl. Sendov et al.), pp. 166–173, Publ. House Bulg. Acad. of Sci., Sofia, (1988).
  • T. N. T. Goodman, A. Sharma: A Bernstein-type operator on the simplex, Math. Balkanica (New Series), 5 (2) (1991), 129–145.
  • K. G. Ivanov, P. E. Parvanov: Weighted approximation by the Goodman-Sharma operators, East J. Approx., 15 (4) (2009), 473–486.
  • G. G. Lorentz: Bernstein Polynomials, Mathematical Expositions 8, University of Toronto Press, (1953).
  • R. P˘alt˘anea: A class of Durrmeyer type operators preserving linear functions, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 5 (2007), 109–117.
  • P. E. Parvanov, B. D. Popov: The limit case of Bernstein’s operators with Jacobi weights, Math. Balkanica (N.S.), 8 (2–3) (1994), 165–177.

Higher order approximation of functions by modified Goodman-Sharma operators

Year 2024, , 180 - 195, 15.12.2024
https://doi.org/10.33205/cma.1563047

Abstract

Here we study the approximation properties of a modified Goodman-Sharma operator recently considered by Acu and Agrawal in [1]. This operator is linear but not positive. It has the advantage of a higher order of approximation of functions compared with the Goodman-Sharma operator. We prove direct and strong converse theorems in terms of a related K-functional.

Project Number

BG-RRP-2.004-0008

Thanks

This study is financed by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project No. BG-RRP-2.004-0008.

References

  • A. M. Acu, P. Agrawal: Better approximation of functions by genuine Bernstein-Durrmeyer type operators, Carpathian J. Math., 35 (2) (2019), 125–136.
  • A. M. Acu, I. Rasa: New estimates for the differences of positive linear operators, Numer. Algorithms, 73 (3) (2016), 775–789.
  • H. Berens, Y. Xu: On Bernstein-Durrmeyer polynomials with Jacobi weights, In Approximation Theory and Functional Analysis, (Edited by C. K. Chui), pp. 25–46, Acad. Press, Boston (1991).
  • L. Beutel, H. Gonska and D. Kacsó: Variation-diminishing splines revised, In Proceedings of International Symposium on Numerical Analysis and Approximation Theory, (Edited by R. Trâmbi¸ta¸s), pp. 54–75, Presa Universitar˘a Clujean˘a, Cluj-Napoka (2002).
  • W. Chen: On the modified Bernstein-Durrmeyer operator, Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou (China), (1987).
  • Z. Ditzian, K. G. Ivanov: Strong converse inequalities, J. Anal. Math., 61 (1993), 61–111.
  • H. Gonska, R. P˘alt˘anea: Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions, Czechoslovak Math. J., 60 (135) (2010), 783–799.
  • H. Gonska, R. P˘alt˘anea: Quantitative convergence theorems for a class of Bernstein-Durrmeyer operators preserving linear functions, Ukrainian Math. J., 62 (2010), 913–922.
  • T. N. T. Goodman, A. Sharma: A modified Bernstein-Schoenberg operator, In Constructive Theory of Functions, Varna 1987, (Edited by Bl. Sendov et al.), pp. 166–173, Publ. House Bulg. Acad. of Sci., Sofia, (1988).
  • T. N. T. Goodman, A. Sharma: A Bernstein-type operator on the simplex, Math. Balkanica (New Series), 5 (2) (1991), 129–145.
  • K. G. Ivanov, P. E. Parvanov: Weighted approximation by the Goodman-Sharma operators, East J. Approx., 15 (4) (2009), 473–486.
  • G. G. Lorentz: Bernstein Polynomials, Mathematical Expositions 8, University of Toronto Press, (1953).
  • R. P˘alt˘anea: A class of Durrmeyer type operators preserving linear functions, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 5 (2007), 109–117.
  • P. E. Parvanov, B. D. Popov: The limit case of Bernstein’s operators with Jacobi weights, Math. Balkanica (N.S.), 8 (2–3) (1994), 165–177.
There are 14 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Articles
Authors

Rumen Uluchev 0000-0002-9122-7088

Ivan Gadjev 0000-0002-4444-9921

Parvan Parvanov 0000-0002-0942-5692

Project Number BG-RRP-2.004-0008
Early Pub Date December 9, 2024
Publication Date December 15, 2024
Submission Date October 7, 2024
Acceptance Date December 6, 2024
Published in Issue Year 2024

Cite

APA Uluchev, R., Gadjev, I., & Parvanov, P. (2024). Higher order approximation of functions by modified Goodman-Sharma operators. Constructive Mathematical Analysis, 7(4), 180-195. https://doi.org/10.33205/cma.1563047
AMA Uluchev R, Gadjev I, Parvanov P. Higher order approximation of functions by modified Goodman-Sharma operators. CMA. December 2024;7(4):180-195. doi:10.33205/cma.1563047
Chicago Uluchev, Rumen, Ivan Gadjev, and Parvan Parvanov. “Higher Order Approximation of Functions by Modified Goodman-Sharma Operators”. Constructive Mathematical Analysis 7, no. 4 (December 2024): 180-95. https://doi.org/10.33205/cma.1563047.
EndNote Uluchev R, Gadjev I, Parvanov P (December 1, 2024) Higher order approximation of functions by modified Goodman-Sharma operators. Constructive Mathematical Analysis 7 4 180–195.
IEEE R. Uluchev, I. Gadjev, and P. Parvanov, “Higher order approximation of functions by modified Goodman-Sharma operators”, CMA, vol. 7, no. 4, pp. 180–195, 2024, doi: 10.33205/cma.1563047.
ISNAD Uluchev, Rumen et al. “Higher Order Approximation of Functions by Modified Goodman-Sharma Operators”. Constructive Mathematical Analysis 7/4 (December 2024), 180-195. https://doi.org/10.33205/cma.1563047.
JAMA Uluchev R, Gadjev I, Parvanov P. Higher order approximation of functions by modified Goodman-Sharma operators. CMA. 2024;7:180–195.
MLA Uluchev, Rumen et al. “Higher Order Approximation of Functions by Modified Goodman-Sharma Operators”. Constructive Mathematical Analysis, vol. 7, no. 4, 2024, pp. 180-95, doi:10.33205/cma.1563047.
Vancouver Uluchev R, Gadjev I, Parvanov P. Higher order approximation of functions by modified Goodman-Sharma operators. CMA. 2024;7(4):180-95.