Research Article
BibTex RIS Cite

Some integral inequalities of Hermite--Hadamard type for $(\beta,F)$-log-convex functions

Year 2025, Volume: 8 Issue: 3, 156 - 164, 15.09.2025
https://doi.org/10.33205/cma.1733628

Abstract

In the paper, the authors introduce the notion of $(\beta,F)$-log-convex functions, give an example of the $(\beta,F)$-log-convex functions, and, by virtue of two known integral identities, establish several integral inequalities of the Hermite--Hadamard type for $(\beta,F)$-log-convex functions.

References

  • M. Adamek: On a problem connected with strongly convex functions, Math. Inequal. Appl., 19(4) (2016), 1287–1293.
  • M. Adamek: On Hermite–Hadamard type inequalities for F-convex functions, J. Math. Inequal., 14(3) (2020), 867–874.
  • M. Adamek: On F-convex functions, J. Convex Anal., 28(3) (2021), 761–770.
  • S. S. Dragomir, R. P. Agarwal: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91–95.
  • S. S. Dragomir, C. E. M. Pearce: Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University (2002).
  • U. S. Kirmaci: Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147(1) (2004), 137–146.
  • N. Merentes, K. Nikodem: Remarks on strongly convex functions, Aequationes Math., 80(1-2) (2010), 193–199.
  • C. E. M. Pearce, J. Peˇcari´c: Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13(2) (2000), 51–55.
  • J. E. Peˇcari´c, F. Proschan, and Y. L. Tong: Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston (1992).
  • B. T. Polyak: Existence theorems and convergence of minimizing sequences in extremum problems with restictions, Soviet Math. Dokl., 7 (1966), 72–75.
  • Y. Shuang, F. Qi: Integral inequalities of Hermite–Hadamard type for GA-F-convex functions, AIMS Math., 6(9) (2021), 9582–9589.
  • Y. Wang, X.-M. Liu, and B.-N. Guo: Several integral inequalities of the Hermite–Hadamard type for s-(β, F)-convex functions, ScienceAsia, 49 (2) (2023), 200–204.
There are 12 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Research Article
Authors

Yan Wang 0000-0002-0368-7106

Ximin Liu 0000-0002-4827-7936

Bo-yan Xi 0000-0003-4528-2331

Feng Qi 0000-0001-6239-2968

Submission Date July 3, 2025
Acceptance Date September 11, 2025
Early Pub Date September 12, 2025
Publication Date September 15, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Wang, Y., Liu, X., Xi, B.- yan, Qi, F. (2025). Some integral inequalities of Hermite--Hadamard type for $(\beta,F)$-log-convex functions. Constructive Mathematical Analysis, 8(3), 156-164. https://doi.org/10.33205/cma.1733628
AMA Wang Y, Liu X, Xi B yan, Qi F. Some integral inequalities of Hermite--Hadamard type for $(\beta,F)$-log-convex functions. CMA. September 2025;8(3):156-164. doi:10.33205/cma.1733628
Chicago Wang, Yan, Ximin Liu, Bo-yan Xi, and Feng Qi. “Some Integral Inequalities of Hermite--Hadamard Type for $(\beta,F)$-Log-Convex Functions”. Constructive Mathematical Analysis 8, no. 3 (September 2025): 156-64. https://doi.org/10.33205/cma.1733628.
EndNote Wang Y, Liu X, Xi B- yan, Qi F (September 1, 2025) Some integral inequalities of Hermite--Hadamard type for $(\beta,F)$-log-convex functions. Constructive Mathematical Analysis 8 3 156–164.
IEEE Y. Wang, X. Liu, B.- yan Xi, and F. Qi, “Some integral inequalities of Hermite--Hadamard type for $(\beta,F)$-log-convex functions”, CMA, vol. 8, no. 3, pp. 156–164, 2025, doi: 10.33205/cma.1733628.
ISNAD Wang, Yan et al. “Some Integral Inequalities of Hermite--Hadamard Type for $(\beta,F)$-Log-Convex Functions”. Constructive Mathematical Analysis 8/3 (September2025), 156-164. https://doi.org/10.33205/cma.1733628.
JAMA Wang Y, Liu X, Xi B- yan, Qi F. Some integral inequalities of Hermite--Hadamard type for $(\beta,F)$-log-convex functions. CMA. 2025;8:156–164.
MLA Wang, Yan et al. “Some Integral Inequalities of Hermite--Hadamard Type for $(\beta,F)$-Log-Convex Functions”. Constructive Mathematical Analysis, vol. 8, no. 3, 2025, pp. 156-64, doi:10.33205/cma.1733628.
Vancouver Wang Y, Liu X, Xi B- yan, Qi F. Some integral inequalities of Hermite--Hadamard type for $(\beta,F)$-log-convex functions. CMA. 2025;8(3):156-64.