Quantitative estimates for wavelet type extension of generalized Kantorovich operators
Year 2025,
Volume: 8 Issue: Special Issue: ICCMA, 39 - 48, 16.12.2025
Gülen Başcanbaz- Tunca
,
Ayşegül Erençin
,
Ayşe Feza Güvenilir
Abstract
In this paper, we consider a sequence of operators as a wavelet type extension of univariate generalized Kantorovich operators depending on a positive real parameter given in [3]. We establish quantitative estimates for the rate of convergence of these operators in the continuous functions space and $L^{p}$-spaces in terms of modulus of continuity and $K$-functionals, respectively. Furthermore, some inequalities such as Bernstein-Markov type for continuous functions and variation preservation type property of the operators when the involved function is of bounded variation are provided.
References
-
O. Agratini: Construction of Baskakov-type operators by wavelets, Rev. Anal. Numér. Théor. Approx., 26 (1-2) (1997), 3–11.
-
H. E. Altin, H. Karsli: Asymptotic expansion of wavelets type generalized Bézier operators, Dolomites Res. Notes
Approx., 18 (2025), 8–16.
-
F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Ra¸sa: A generalization of Kantorovich operators for convex compact subsets, Banach J. Math. Anal., 11 (3) (2017), 591–614.
-
D. B˘arbosu, D. Micl˘au¸s: On the composite Bernstein type quadrature formula, Rev. Anal. Numér. Théor. Approx., 39 (1) (2010), 3–7.
-
D. B˘arbosu: The Bernstein operators on any finite interval revisited, Creat. Math. Inform., 29 (1) (2020), 1–8.
-
C. Bardaro, P. L. Butzer, R. L. Stens and G. Vinti: Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis, 23 (2003), 299–340.
-
L. Coroianu, D. Costarelli and U. Kadak: Quantitative estimates for neural network operators implied by the asymptotic behaviour of the sigmoidal activation functions, Mediterr. J. Math., 19 (2022), Article ID: 211.
-
L. Debnath: Wavelet transforms and their applications, Springer Science+Business Media, New York (2002).
-
R. A. DeVore, G. G. Lorentz: Constructive approximation, Springer, Berlin, New York (1993).
-
H. H. Gonska, Ding-Xuan Zhou: Using wavelets for Szász-type operators, Rev. Anal. Numér. Théor. Approx., 24 (1-2) (1995), 131–145.
-
H. Karsli: Extension of the generalized Bézier operators by wavelets, General Mathematics, 30 (2) (2022), 3–15.
-
H. Karsli: On wavelet type generalized Bézier operators, Math. Found. Comput., 6 (3) (2023), 439–452.
-
H. Karsli: On wavelet type Bernstein operators, Carpathian Math. Publ., 15 (1) (2023), 212–221.
-
H. Karsli: Asymptotic properties and quantitative results of the wavelet type Bernstein operators, Dolomites Res. Notes Approx., 17 (2024), 50–62.
-
D. Micl˘au¸s: The representation of the remainder in classical Bernstein approximation formula, Global J. Adv. Res. Classical Modern Geom., 6 (2) (2017), 119–125.
-
J. Morlet, G. Arens, E. Fourgeau and D. Giard: Wave propagation and sampling theory, Part I: Comlpex signal land scattering in multilayer media, J. Geophys., 47 (1982), 203–221.
-
J. Morlet, G. Arens, E. Fourgeau, D. Giard: Wave propagation and sampling theory, Part II: Sampling theory and complex waves, J. Geophys., 47 (1982), 222–236.
-
A. Zygmund: Trigonometric series, Vols.I,II, 3rd ed., Cambridge Uni. Press, Cambridge (2002).