Research Article
BibTex RIS Cite

Quantitative estimates for wavelet type extension of generalized Kantorovich operators

Year 2025, Volume: 8 Issue: Special Issue: ICCMA, 39 - 48, 16.12.2025
https://doi.org/10.33205/cma.1784422

Abstract

In this paper, we consider a sequence of operators as a wavelet type extension of univariate generalized Kantorovich operators depending on a positive real parameter given in [3]. We establish quantitative estimates for the rate of convergence of these operators in the continuous functions space and $L^{p}$-spaces in terms of modulus of continuity and $K$-functionals, respectively. Furthermore, some inequalities such as Bernstein-Markov type for continuous functions and variation preservation type property of the operators when the involved function is of bounded variation are provided.

References

  • O. Agratini: Construction of Baskakov-type operators by wavelets, Rev. Anal. Numér. Théor. Approx., 26 (1-2) (1997), 3–11.
  • H. E. Altin, H. Karsli: Asymptotic expansion of wavelets type generalized Bézier operators, Dolomites Res. Notes Approx., 18 (2025), 8–16.
  • F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Ra¸sa: A generalization of Kantorovich operators for convex compact subsets, Banach J. Math. Anal., 11 (3) (2017), 591–614.
  • D. B˘arbosu, D. Micl˘au¸s: On the composite Bernstein type quadrature formula, Rev. Anal. Numér. Théor. Approx., 39 (1) (2010), 3–7.
  • D. B˘arbosu: The Bernstein operators on any finite interval revisited, Creat. Math. Inform., 29 (1) (2020), 1–8.
  • C. Bardaro, P. L. Butzer, R. L. Stens and G. Vinti: Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis, 23 (2003), 299–340.
  • L. Coroianu, D. Costarelli and U. Kadak: Quantitative estimates for neural network operators implied by the asymptotic behaviour of the sigmoidal activation functions, Mediterr. J. Math., 19 (2022), Article ID: 211.
  • L. Debnath: Wavelet transforms and their applications, Springer Science+Business Media, New York (2002).
  • R. A. DeVore, G. G. Lorentz: Constructive approximation, Springer, Berlin, New York (1993).
  • H. H. Gonska, Ding-Xuan Zhou: Using wavelets for Szász-type operators, Rev. Anal. Numér. Théor. Approx., 24 (1-2) (1995), 131–145.
  • H. Karsli: Extension of the generalized Bézier operators by wavelets, General Mathematics, 30 (2) (2022), 3–15.
  • H. Karsli: On wavelet type generalized Bézier operators, Math. Found. Comput., 6 (3) (2023), 439–452.
  • H. Karsli: On wavelet type Bernstein operators, Carpathian Math. Publ., 15 (1) (2023), 212–221.
  • H. Karsli: Asymptotic properties and quantitative results of the wavelet type Bernstein operators, Dolomites Res. Notes Approx., 17 (2024), 50–62.
  • D. Micl˘au¸s: The representation of the remainder in classical Bernstein approximation formula, Global J. Adv. Res. Classical Modern Geom., 6 (2) (2017), 119–125.
  • J. Morlet, G. Arens, E. Fourgeau and D. Giard: Wave propagation and sampling theory, Part I: Comlpex signal land scattering in multilayer media, J. Geophys., 47 (1982), 203–221.
  • J. Morlet, G. Arens, E. Fourgeau, D. Giard: Wave propagation and sampling theory, Part II: Sampling theory and complex waves, J. Geophys., 47 (1982), 222–236.
  • A. Zygmund: Trigonometric series, Vols.I,II, 3rd ed., Cambridge Uni. Press, Cambridge (2002).
There are 18 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Research Article
Authors

Gülen Başcanbaz- Tunca 0000-0003-3216-1661

Ayşegül Erençin 0000-0001-6946-9577

Ayşe Feza Güvenilir 0000-0003-2670-5570

Submission Date September 15, 2025
Acceptance Date November 30, 2025
Early Pub Date December 16, 2025
Publication Date December 16, 2025
Published in Issue Year 2025 Volume: 8 Issue: Special Issue: ICCMA

Cite

APA Başcanbaz- Tunca, G., Erençin, A., & Güvenilir, A. F. (2025). Quantitative estimates for wavelet type extension of generalized Kantorovich operators. Constructive Mathematical Analysis, 8(Special Issue: ICCMA), 39-48. https://doi.org/10.33205/cma.1784422
AMA Başcanbaz- Tunca G, Erençin A, Güvenilir AF. Quantitative estimates for wavelet type extension of generalized Kantorovich operators. CMA. December 2025;8(Special Issue: ICCMA):39-48. doi:10.33205/cma.1784422
Chicago Başcanbaz- Tunca, Gülen, Ayşegül Erençin, and Ayşe Feza Güvenilir. “Quantitative Estimates for Wavelet Type Extension of Generalized Kantorovich Operators”. Constructive Mathematical Analysis 8, no. Special Issue: ICCMA (December 2025): 39-48. https://doi.org/10.33205/cma.1784422.
EndNote Başcanbaz- Tunca G, Erençin A, Güvenilir AF (December 1, 2025) Quantitative estimates for wavelet type extension of generalized Kantorovich operators. Constructive Mathematical Analysis 8 Special Issue: ICCMA 39–48.
IEEE G. Başcanbaz- Tunca, A. Erençin, and A. F. Güvenilir, “Quantitative estimates for wavelet type extension of generalized Kantorovich operators”, CMA, vol. 8, no. Special Issue: ICCMA, pp. 39–48, 2025, doi: 10.33205/cma.1784422.
ISNAD Başcanbaz- Tunca, Gülen et al. “Quantitative Estimates for Wavelet Type Extension of Generalized Kantorovich Operators”. Constructive Mathematical Analysis 8/Special Issue: ICCMA (December2025), 39-48. https://doi.org/10.33205/cma.1784422.
JAMA Başcanbaz- Tunca G, Erençin A, Güvenilir AF. Quantitative estimates for wavelet type extension of generalized Kantorovich operators. CMA. 2025;8:39–48.
MLA Başcanbaz- Tunca, Gülen et al. “Quantitative Estimates for Wavelet Type Extension of Generalized Kantorovich Operators”. Constructive Mathematical Analysis, vol. 8, no. Special Issue: ICCMA, 2025, pp. 39-48, doi:10.33205/cma.1784422.
Vancouver Başcanbaz- Tunca G, Erençin A, Güvenilir AF. Quantitative estimates for wavelet type extension of generalized Kantorovich operators. CMA. 2025;8(Special Issue: ICCMA):39-48.