Research Article
BibTex RIS Cite
Year 2020, , 75 - 84, 01.06.2020
https://doi.org/10.33205/cma.690236

Abstract

References

  • L. C. Andrews: Special functions of mathematics for engineers. Reprint of the 1992 second edition. SPIE Optical Engineering Press, Bellingham, WA; Oxford University Press, Oxford, (1998).
  • H. Azad, A. Laradji and M. T. Mustafa: Polynomial solutions of differential equations. Adv. Difference Equ. 2011:58 (2011), 12 pp.
  • K. Castillo: A new approach to relative asymptotic behavior for discrete Sobolev-type orthogonal polynomials on the unit circle. Appl. Math. Lett. 25 (2012), no. 6, 1000–1004.
  • L. Garza, F. Marcellán and N. C. Pinzón-Cortés: (1; 1)-coherent pairs on the unit circle. Abstr. Appl. Anal. (2013), Art. ID 307974, 8 pp.
  • Kh. D. Ikramov: Matrix pencils – theory, applications, numerical methods. (Russian) Translated in J. Soviet Math. 64 (1993), no. 2, 783–853. Itogi Nauki i Tekhniki, Mat. Anal., 29, Mathematical analysis, Vol. 29 (Russian), 3–106, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, (1991).
  • M. E. H. Ismail: Classical and quantum orthogonal polynomials in one variable. With two chapters by Walter Van Assche.With a foreword by Richard A. Askey. Encyclopedia of Mathematics and its Applications, 98. Cambridge University Press, Cambridge, (2005).
  • M. E. H. Ismail, D. R. Masson: Generalized orthogonality and continued fractions. J. Approx. Theory 83 (1995), no. 1, 1–40.
  • K. H. Kim, H. K. Kwon, L. L. Littlejohn and G. J. Yoon: Diagonalizability and symmetrizability of Sobolev-type bilinear forms: a combinatorial approach. Linear Algebra Appl. 460 (2014), 111–124.
  • R. Koekoek, P. A. Lesky and R. F. Swarttouw: Hypergeometric orthogonal polynomials and their q-analogues. With a foreword by Tom H. Koornwinder. Springer Monographs in Mathematics. Springer-Verlag, Berlin, (2010).
  • K. H. Kwon, L. L. Littlejohn and G. J. Yoon: Ghost matrices and a characterization of symmetric Sobolev bilinear forms. Linear Algebra Appl. 431 (2009), no. 1-2, 104–119.
  • F. Marcellán, Y. Xu: On Sobolev orthogonal polynomials. Expo. Math. 33 (2015), no. 3, 308–352.
  • A. S. Markus: Introduction to the spectral theory of polynomial operator pencils. With an appendix by M. V. Keldysh. Translations of Mathematical Monographs, 71. American Mathematical Society, Providence, RI, (1988).
  • R. Mennicken, M. Möller: Non-self-adjoint boundary eigenvalue problems. North-Holland Mathematics Studies, 192. North-Holland Publishing Co., Amsterdam, (2003).
  • E. D. Rainville: Special functions. Reprint of 1960 first edition. Chelsea Publishing Co., Bronx, N.Y., (1971).
  • L. Rodman: An introduction to operator polynomials. Operator Theory: Advances and Applications, 38. Birkhäuser Verlag, Basel, (1989).
  • B. Simon: Orthogonal polynomials on the unit circle. Part 1. Classical theory. American Mathematical Society Colloquium Publications, 54, Part 1. American Mathematical Society, Providence, RI, (2005).
  • B. Simon: Orthogonal polynomials on the unit circle. Part 2. Spectral theory. American Mathematical Society Colloquium Publications, 54, Part 2. American Mathematical Society, Providence, RI, (2005).
  • A. Sri Ranga: Orthogonal polynomials with respect to a family of Sobolev inner products on the unit circle. Proc. Amer. Math. Soc. 144 (2016), no. 3, 1129–1143.
  • G. Szegö: Orthogonal polynomials. Fourth edition. American Mathematical Society, Colloquium Publications, Vol. XXIII. American Mathematical Society, Providence, R.I., (1975).
  • S. M. Zagorodnyuk: On some classical type Sobolev orthogonal polynomials. J. Approx. Theory 250 (2020), 105337, 14 pp.
  • A. Zhedanov: Biorthogonal rational functions and the generalized eigenvalue problem. J. Approx. Theory 101 (1999), no. 2, pp. 303–329.

On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle

Year 2020, , 75 - 84, 01.06.2020
https://doi.org/10.33205/cma.690236

Abstract

In this paper we study the following family of hypergeometric polynomials:
$y_n(x) = \frac{ (-1)^\rho }{ n! } x^n {}_2 F_0(-n,\rho;-;-\frac{1}{x})$, depending on a parameter $\rho\in\mathbb{N}$.
Differential equations of orders $\rho+1$ and $2$ for these polynomials are given.
A recurrence relation for $y_n$ is derived as well.
Polynomials $y_n$ are Sobolev orthogonal polynomials on the unit circle
with an explicit matrix measure.

References

  • L. C. Andrews: Special functions of mathematics for engineers. Reprint of the 1992 second edition. SPIE Optical Engineering Press, Bellingham, WA; Oxford University Press, Oxford, (1998).
  • H. Azad, A. Laradji and M. T. Mustafa: Polynomial solutions of differential equations. Adv. Difference Equ. 2011:58 (2011), 12 pp.
  • K. Castillo: A new approach to relative asymptotic behavior for discrete Sobolev-type orthogonal polynomials on the unit circle. Appl. Math. Lett. 25 (2012), no. 6, 1000–1004.
  • L. Garza, F. Marcellán and N. C. Pinzón-Cortés: (1; 1)-coherent pairs on the unit circle. Abstr. Appl. Anal. (2013), Art. ID 307974, 8 pp.
  • Kh. D. Ikramov: Matrix pencils – theory, applications, numerical methods. (Russian) Translated in J. Soviet Math. 64 (1993), no. 2, 783–853. Itogi Nauki i Tekhniki, Mat. Anal., 29, Mathematical analysis, Vol. 29 (Russian), 3–106, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, (1991).
  • M. E. H. Ismail: Classical and quantum orthogonal polynomials in one variable. With two chapters by Walter Van Assche.With a foreword by Richard A. Askey. Encyclopedia of Mathematics and its Applications, 98. Cambridge University Press, Cambridge, (2005).
  • M. E. H. Ismail, D. R. Masson: Generalized orthogonality and continued fractions. J. Approx. Theory 83 (1995), no. 1, 1–40.
  • K. H. Kim, H. K. Kwon, L. L. Littlejohn and G. J. Yoon: Diagonalizability and symmetrizability of Sobolev-type bilinear forms: a combinatorial approach. Linear Algebra Appl. 460 (2014), 111–124.
  • R. Koekoek, P. A. Lesky and R. F. Swarttouw: Hypergeometric orthogonal polynomials and their q-analogues. With a foreword by Tom H. Koornwinder. Springer Monographs in Mathematics. Springer-Verlag, Berlin, (2010).
  • K. H. Kwon, L. L. Littlejohn and G. J. Yoon: Ghost matrices and a characterization of symmetric Sobolev bilinear forms. Linear Algebra Appl. 431 (2009), no. 1-2, 104–119.
  • F. Marcellán, Y. Xu: On Sobolev orthogonal polynomials. Expo. Math. 33 (2015), no. 3, 308–352.
  • A. S. Markus: Introduction to the spectral theory of polynomial operator pencils. With an appendix by M. V. Keldysh. Translations of Mathematical Monographs, 71. American Mathematical Society, Providence, RI, (1988).
  • R. Mennicken, M. Möller: Non-self-adjoint boundary eigenvalue problems. North-Holland Mathematics Studies, 192. North-Holland Publishing Co., Amsterdam, (2003).
  • E. D. Rainville: Special functions. Reprint of 1960 first edition. Chelsea Publishing Co., Bronx, N.Y., (1971).
  • L. Rodman: An introduction to operator polynomials. Operator Theory: Advances and Applications, 38. Birkhäuser Verlag, Basel, (1989).
  • B. Simon: Orthogonal polynomials on the unit circle. Part 1. Classical theory. American Mathematical Society Colloquium Publications, 54, Part 1. American Mathematical Society, Providence, RI, (2005).
  • B. Simon: Orthogonal polynomials on the unit circle. Part 2. Spectral theory. American Mathematical Society Colloquium Publications, 54, Part 2. American Mathematical Society, Providence, RI, (2005).
  • A. Sri Ranga: Orthogonal polynomials with respect to a family of Sobolev inner products on the unit circle. Proc. Amer. Math. Soc. 144 (2016), no. 3, 1129–1143.
  • G. Szegö: Orthogonal polynomials. Fourth edition. American Mathematical Society, Colloquium Publications, Vol. XXIII. American Mathematical Society, Providence, R.I., (1975).
  • S. M. Zagorodnyuk: On some classical type Sobolev orthogonal polynomials. J. Approx. Theory 250 (2020), 105337, 14 pp.
  • A. Zhedanov: Biorthogonal rational functions and the generalized eigenvalue problem. J. Approx. Theory 101 (1999), no. 2, pp. 303–329.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Sergey Zagorodnyuk

Publication Date June 1, 2020
Published in Issue Year 2020

Cite

APA Zagorodnyuk, S. (2020). On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle. Constructive Mathematical Analysis, 3(2), 75-84. https://doi.org/10.33205/cma.690236
AMA Zagorodnyuk S. On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle. CMA. June 2020;3(2):75-84. doi:10.33205/cma.690236
Chicago Zagorodnyuk, Sergey. “On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle”. Constructive Mathematical Analysis 3, no. 2 (June 2020): 75-84. https://doi.org/10.33205/cma.690236.
EndNote Zagorodnyuk S (June 1, 2020) On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle. Constructive Mathematical Analysis 3 2 75–84.
IEEE S. Zagorodnyuk, “On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle”, CMA, vol. 3, no. 2, pp. 75–84, 2020, doi: 10.33205/cma.690236.
ISNAD Zagorodnyuk, Sergey. “On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle”. Constructive Mathematical Analysis 3/2 (June 2020), 75-84. https://doi.org/10.33205/cma.690236.
JAMA Zagorodnyuk S. On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle. CMA. 2020;3:75–84.
MLA Zagorodnyuk, Sergey. “On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle”. Constructive Mathematical Analysis, vol. 3, no. 2, 2020, pp. 75-84, doi:10.33205/cma.690236.
Vancouver Zagorodnyuk S. On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle. CMA. 2020;3(2):75-84.