Research Article
BibTex RIS Cite

Iterates of Markov Operators and Constructive Approximation of Semigroups

Year 2019, Volume: 2 Issue: 1, 22 - 39, 01.03.2019
https://doi.org/10.33205/cma.491601

Abstract

In this paper we survey some recent results concerning the asymptotic behaviour of the iterates of a single Markov operator or of a sequence of Markov operators. Among other things, a characterization of the convergence of the iterates of Markov operators toward a given Markov projection is discussed in terms of the involved interpolation sets. Constructive approximation problems for strongly continuous semigroups of operators in terms of iterates are also discussed. In particular we present some simple criteria concerning their asymptotic behaviour. Finally, some applications are shown concerning Bernstein-Schnabl operators on convex compact sets and Bernstein-Durrmeyer operators with Jacobi weights on the unit hypercube. A final section contains some suggestions for possible further researches.

References

  • [1] F. Altomare, Korovkin-type Theorems and Approximation by Positive Linear Operators, Surveys in Approximation Theory, Vol. 5, 2010, 92-164, free available on line at http://www.math.technion.ac.il/sat/papers/13/, ISSN 1555- 578X.
  • [2] F. Altomare, On some convergence criteria for nets of positive operators on continuous function spaces, J. Math. Anal. Appl. 398 (2013) 542 - 552.
  • [3] F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and its Applications, de Gruyter Studies in Mathematics 17, Walter de Gruyter, Berlin-New York, 1994.
  • [4] F. Altomare, M. Cappelletti Montano, V. Leonessa, On the positive semigroups generated by Fleming-Viot type differential operators on hypercubes, Comm. Pure and Appl. Anal., Volume 18, Number 1, January 2019, pp. 323 - 340.
  • [5] F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Raşa, Markov Operators, Positive Semigroups and Approximation Processes, de Gruyter Studies in Mathematics 61, Walter de Gruyter GmbH, Berlin/Boston, 2014.
  • [6] F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Raşa, A generalization of Kantorovich operators for convex compact subsets, Banach J. Math. Anal. 11(2017), no. 3, 591 - 614.
  • [7] F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Raşa, Elliptic differential operators and positive semigroups associated with generalized Kantorovich operators, J. Math. Anal. Appl. 458(2018), 153 - 173.
  • [8] F. Altomare and V. Leonessa, An invitation to the study of evolution equations by means of positive linear operators, Lecture Notes of Seminario Interdisciplinare di Matematica, Volume VIII, 1-41, Lect. Notes Semin. Interdiscip. Mat., 8, Semin. Interdiscip. Mat., Potenza 2009.
  • [9] F. Altomare, V. Leonessa and S. Milella, Bernstein-Schnabl operators on noncompact real intervals, Jaen J. Approx., 1(2) (2009), 223-256.
  • [10] F. Altomare, V. Leonessa and I. Raşa, On Bernstein-Schnabl operators on the unit interval, Z. Anal. Anwend. 27(2008), no. 3, 353 - 379.
  • [11] F. Altomare and I. Raşa, Lipschitz contractions, unique ergodicity and asymptotics of Markov semigroups,Bollettino U.M.I. (9) V(2012),1-17.
  • [12] H. Bauer, Measure and Integration Theory, de Gruyter Studies in Mathematics 26, Walter de Gruyter GmbH, Berlin/Boston, 2011.
  • [13] H. Berens and Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weights, in: C. K. Chui (Ed.), Approximation Theory and Functional Analysis, Academic Press, Boston, 1991, 25-46.
  • [14] P. L. Butzer and H. Berens, Semi-groups of Operators and Approximation, Springer-Verlag, New York, 1967.
  • [15] I. Gavrea and M. Ivan, On the iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl.372(2010),366-368.
  • [16] I. Gavrea and M. Ivan, Asymptotic behaviour of the iterates of positive linear operators, Abstr. Appl. Anal. 2011, Art. ID 670509, 11 pp.
  • [17] I. Gavrea and M. Ivan, On the iterates of positive linear operators, J. Approx. Theory 163 (2011), 1076-1079.
  • [18] A. Guessab and G. Schmeisser, Two Korovkin-type theorems in multivariate approximation, Banach J. Math. Anal. 2 (2008), no. 2,121-128.
  • [19] W. Heping, Korovkin-type theorem and application, J. Approx. Theory, 132 (2005), no. 2, 258-264.
  • [20] U. Krengel, Ergodic Theorems, de Gruyter Studies in Mathematics 6, W. de Gruyter, Berlin, New York, 1985.
  • [21] C. A.Micchelli, The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory 8 (1973), 1-18.
  • [22] R. Paltanea, Sur un opérateur polynomial défini sur l’ensemble des fonctions intégrables, Univ. Babe¸s-Bolyai, Cluj- Napoca, 83-2 (1983), 101-106.
  • [23] I. Raşa, Asymptotic behaviour of iterates of positive linear operators, Jaen J. Approx. 1 (2) (2009), 195-204.
  • [24] R. Schnabl, Zum globalen Saturationsproblem der Folge der Bernsteinoperatoren, Acta Sci. Math. (Szeged) 31 (1970), 351-358.
  • [25] H. F. Trotter, Approximation of semigroups of operators, Pacific J. Math. 8 (1958), 887-919.
Year 2019, Volume: 2 Issue: 1, 22 - 39, 01.03.2019
https://doi.org/10.33205/cma.491601

Abstract

References

  • [1] F. Altomare, Korovkin-type Theorems and Approximation by Positive Linear Operators, Surveys in Approximation Theory, Vol. 5, 2010, 92-164, free available on line at http://www.math.technion.ac.il/sat/papers/13/, ISSN 1555- 578X.
  • [2] F. Altomare, On some convergence criteria for nets of positive operators on continuous function spaces, J. Math. Anal. Appl. 398 (2013) 542 - 552.
  • [3] F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and its Applications, de Gruyter Studies in Mathematics 17, Walter de Gruyter, Berlin-New York, 1994.
  • [4] F. Altomare, M. Cappelletti Montano, V. Leonessa, On the positive semigroups generated by Fleming-Viot type differential operators on hypercubes, Comm. Pure and Appl. Anal., Volume 18, Number 1, January 2019, pp. 323 - 340.
  • [5] F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Raşa, Markov Operators, Positive Semigroups and Approximation Processes, de Gruyter Studies in Mathematics 61, Walter de Gruyter GmbH, Berlin/Boston, 2014.
  • [6] F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Raşa, A generalization of Kantorovich operators for convex compact subsets, Banach J. Math. Anal. 11(2017), no. 3, 591 - 614.
  • [7] F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Raşa, Elliptic differential operators and positive semigroups associated with generalized Kantorovich operators, J. Math. Anal. Appl. 458(2018), 153 - 173.
  • [8] F. Altomare and V. Leonessa, An invitation to the study of evolution equations by means of positive linear operators, Lecture Notes of Seminario Interdisciplinare di Matematica, Volume VIII, 1-41, Lect. Notes Semin. Interdiscip. Mat., 8, Semin. Interdiscip. Mat., Potenza 2009.
  • [9] F. Altomare, V. Leonessa and S. Milella, Bernstein-Schnabl operators on noncompact real intervals, Jaen J. Approx., 1(2) (2009), 223-256.
  • [10] F. Altomare, V. Leonessa and I. Raşa, On Bernstein-Schnabl operators on the unit interval, Z. Anal. Anwend. 27(2008), no. 3, 353 - 379.
  • [11] F. Altomare and I. Raşa, Lipschitz contractions, unique ergodicity and asymptotics of Markov semigroups,Bollettino U.M.I. (9) V(2012),1-17.
  • [12] H. Bauer, Measure and Integration Theory, de Gruyter Studies in Mathematics 26, Walter de Gruyter GmbH, Berlin/Boston, 2011.
  • [13] H. Berens and Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weights, in: C. K. Chui (Ed.), Approximation Theory and Functional Analysis, Academic Press, Boston, 1991, 25-46.
  • [14] P. L. Butzer and H. Berens, Semi-groups of Operators and Approximation, Springer-Verlag, New York, 1967.
  • [15] I. Gavrea and M. Ivan, On the iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl.372(2010),366-368.
  • [16] I. Gavrea and M. Ivan, Asymptotic behaviour of the iterates of positive linear operators, Abstr. Appl. Anal. 2011, Art. ID 670509, 11 pp.
  • [17] I. Gavrea and M. Ivan, On the iterates of positive linear operators, J. Approx. Theory 163 (2011), 1076-1079.
  • [18] A. Guessab and G. Schmeisser, Two Korovkin-type theorems in multivariate approximation, Banach J. Math. Anal. 2 (2008), no. 2,121-128.
  • [19] W. Heping, Korovkin-type theorem and application, J. Approx. Theory, 132 (2005), no. 2, 258-264.
  • [20] U. Krengel, Ergodic Theorems, de Gruyter Studies in Mathematics 6, W. de Gruyter, Berlin, New York, 1985.
  • [21] C. A.Micchelli, The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory 8 (1973), 1-18.
  • [22] R. Paltanea, Sur un opérateur polynomial défini sur l’ensemble des fonctions intégrables, Univ. Babe¸s-Bolyai, Cluj- Napoca, 83-2 (1983), 101-106.
  • [23] I. Raşa, Asymptotic behaviour of iterates of positive linear operators, Jaen J. Approx. 1 (2) (2009), 195-204.
  • [24] R. Schnabl, Zum globalen Saturationsproblem der Folge der Bernsteinoperatoren, Acta Sci. Math. (Szeged) 31 (1970), 351-358.
  • [25] H. F. Trotter, Approximation of semigroups of operators, Pacific J. Math. 8 (1958), 887-919.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Francesco Altomare 0000-0003-3407-3040

Publication Date March 1, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Altomare, F. (2019). Iterates of Markov Operators and Constructive Approximation of Semigroups. Constructive Mathematical Analysis, 2(1), 22-39. https://doi.org/10.33205/cma.491601
AMA Altomare F. Iterates of Markov Operators and Constructive Approximation of Semigroups. CMA. March 2019;2(1):22-39. doi:10.33205/cma.491601
Chicago Altomare, Francesco. “Iterates of Markov Operators and Constructive Approximation of Semigroups”. Constructive Mathematical Analysis 2, no. 1 (March 2019): 22-39. https://doi.org/10.33205/cma.491601.
EndNote Altomare F (March 1, 2019) Iterates of Markov Operators and Constructive Approximation of Semigroups. Constructive Mathematical Analysis 2 1 22–39.
IEEE F. Altomare, “Iterates of Markov Operators and Constructive Approximation of Semigroups”, CMA, vol. 2, no. 1, pp. 22–39, 2019, doi: 10.33205/cma.491601.
ISNAD Altomare, Francesco. “Iterates of Markov Operators and Constructive Approximation of Semigroups”. Constructive Mathematical Analysis 2/1 (March 2019), 22-39. https://doi.org/10.33205/cma.491601.
JAMA Altomare F. Iterates of Markov Operators and Constructive Approximation of Semigroups. CMA. 2019;2:22–39.
MLA Altomare, Francesco. “Iterates of Markov Operators and Constructive Approximation of Semigroups”. Constructive Mathematical Analysis, vol. 2, no. 1, 2019, pp. 22-39, doi:10.33205/cma.491601.
Vancouver Altomare F. Iterates of Markov Operators and Constructive Approximation of Semigroups. CMA. 2019;2(1):22-39.