Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 3, 104 - 112, 14.09.2020
https://doi.org/10.33205/cma.728156

Abstract

References

  • A. B. Aleksandrov: A-integrability of the boundary values of harmonic functions. Math. Notes 30(1) (1981), 515–523.
  • R. A. Aliev: N ± -integrals and boundary values of Cauchy-type integrals of finite measures. Sbornik: Mathematics 205(7) (2014), 913–935.
  • R. A. Aliev: On properties of Hilbert transform of finite complex measures. Complex Analysis and Operator Theory 10(1) (2016), 171–185.
  • R. A. Aliev: Riesz’s equality for the Hilbert transform of the finite complex measures. Azerb. J. Math. 6(1) (2016), 126–135.
  • R. A. Aliev: Representability of Cauchy-type integrals of finite complex measures on the real axis in terms of their boundary values. Complex Variables and Elliptic Equations 62(4) (2017), 536–553.
  • R. A. Aliev, K. I. Nebiyeva: The A-integral and Restricted Complex Riesz Transform. Azerbaijan Journal of Mathe- matics 10(1) (2020), 209–221.
  • A. S. Besicovitch: On a general metric property of summable functions. J. London Math. Soc. 1(2) (1926), 120–128.
  • M. P. Efimova: On the properties of the Q-integral. Math. Notes 90(3-4) (2011), 322–332.
  • M. P. Efimova: The sufficient condition for integrability of a generalized Q-integral and points of integrability. Moscow Univ. Math. Bull. 70(4) (2015), 181–184.
  • L. C. Evans, R. F. Gariepy: Measure theory and fine properties of functions. CRC Press, Boca Raton (1992).
  • M. A. Ragusa: Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis. Comment. Math. Univ. Carolin 40(4) (1999), 651–663.
  • M. A. Ragusa: Necessary and sufficient condition for a VMO function. Applied Mathematics and Computation 218(24) (2012), 11952–11958.
  • T. S. Salimov: The A-integral and boundary values of analytic functions. Math. USSR-Sbornik 64(1) (1989), 23–40.
  • V. A. Skvortsov: A-integrable martingale sequences and Walsh series. Izvestia: Math. 65(3) (2001), 607–616.
  • E. M. Stein: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970).
  • E. C. Titchmarsh: On conjugate functions. Proc. London Math. Soc. 9 (1929), 49–80.
  • P. L. Ul’yanov: The A-integral and conjugate functions. Mathematics, vol.7 (1956), Uch. Zap. Mosk. Gos. Univ. 181, 139–157, (in Russian).
  • P. L. Ul’yanov: Integrals of Cauchy type. Twelve Papers on Approximations and Integrals. Amer. Math. Soc. Trans. 2(44) (1965), 129-150.

The A-Integral and Restricted Riesz Transform

Year 2020, Volume: 3 Issue: 3, 104 - 112, 14.09.2020
https://doi.org/10.33205/cma.728156

Abstract

It is known that the restricted Riesz transform of a Lebesgue integrable function is not Lebesgue integrable. In this paper we prove that the restricted Riesz transform of a Lebesgue integrable function is A-integrable and the analogue of Riesz's equality holds.

ABSTRACT.It is known that the restricted Riesz transform of a Lebesgue integrable function is not Lebesgue inte-grable. In this paper, we prove that the restricted Riesz transform of a Lebesgue integrable function isA-integrableand the analogue of Riesz’s equality holds

References

  • A. B. Aleksandrov: A-integrability of the boundary values of harmonic functions. Math. Notes 30(1) (1981), 515–523.
  • R. A. Aliev: N ± -integrals and boundary values of Cauchy-type integrals of finite measures. Sbornik: Mathematics 205(7) (2014), 913–935.
  • R. A. Aliev: On properties of Hilbert transform of finite complex measures. Complex Analysis and Operator Theory 10(1) (2016), 171–185.
  • R. A. Aliev: Riesz’s equality for the Hilbert transform of the finite complex measures. Azerb. J. Math. 6(1) (2016), 126–135.
  • R. A. Aliev: Representability of Cauchy-type integrals of finite complex measures on the real axis in terms of their boundary values. Complex Variables and Elliptic Equations 62(4) (2017), 536–553.
  • R. A. Aliev, K. I. Nebiyeva: The A-integral and Restricted Complex Riesz Transform. Azerbaijan Journal of Mathe- matics 10(1) (2020), 209–221.
  • A. S. Besicovitch: On a general metric property of summable functions. J. London Math. Soc. 1(2) (1926), 120–128.
  • M. P. Efimova: On the properties of the Q-integral. Math. Notes 90(3-4) (2011), 322–332.
  • M. P. Efimova: The sufficient condition for integrability of a generalized Q-integral and points of integrability. Moscow Univ. Math. Bull. 70(4) (2015), 181–184.
  • L. C. Evans, R. F. Gariepy: Measure theory and fine properties of functions. CRC Press, Boca Raton (1992).
  • M. A. Ragusa: Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis. Comment. Math. Univ. Carolin 40(4) (1999), 651–663.
  • M. A. Ragusa: Necessary and sufficient condition for a VMO function. Applied Mathematics and Computation 218(24) (2012), 11952–11958.
  • T. S. Salimov: The A-integral and boundary values of analytic functions. Math. USSR-Sbornik 64(1) (1989), 23–40.
  • V. A. Skvortsov: A-integrable martingale sequences and Walsh series. Izvestia: Math. 65(3) (2001), 607–616.
  • E. M. Stein: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970).
  • E. C. Titchmarsh: On conjugate functions. Proc. London Math. Soc. 9 (1929), 49–80.
  • P. L. Ul’yanov: The A-integral and conjugate functions. Mathematics, vol.7 (1956), Uch. Zap. Mosk. Gos. Univ. 181, 139–157, (in Russian).
  • P. L. Ul’yanov: Integrals of Cauchy type. Twelve Papers on Approximations and Integrals. Amer. Math. Soc. Trans. 2(44) (1965), 129-150.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Rashid Aliev

Khanim Nebiyeva This is me

Publication Date September 14, 2020
Published in Issue Year 2020 Volume: 3 Issue: 3

Cite

APA Aliev, R., & Nebiyeva, K. (2020). The A-Integral and Restricted Riesz Transform. Constructive Mathematical Analysis, 3(3), 104-112. https://doi.org/10.33205/cma.728156
AMA Aliev R, Nebiyeva K. The A-Integral and Restricted Riesz Transform. CMA. September 2020;3(3):104-112. doi:10.33205/cma.728156
Chicago Aliev, Rashid, and Khanim Nebiyeva. “The A-Integral and Restricted Riesz Transform”. Constructive Mathematical Analysis 3, no. 3 (September 2020): 104-12. https://doi.org/10.33205/cma.728156.
EndNote Aliev R, Nebiyeva K (September 1, 2020) The A-Integral and Restricted Riesz Transform. Constructive Mathematical Analysis 3 3 104–112.
IEEE R. Aliev and K. Nebiyeva, “The A-Integral and Restricted Riesz Transform”, CMA, vol. 3, no. 3, pp. 104–112, 2020, doi: 10.33205/cma.728156.
ISNAD Aliev, Rashid - Nebiyeva, Khanim. “The A-Integral and Restricted Riesz Transform”. Constructive Mathematical Analysis 3/3 (September 2020), 104-112. https://doi.org/10.33205/cma.728156.
JAMA Aliev R, Nebiyeva K. The A-Integral and Restricted Riesz Transform. CMA. 2020;3:104–112.
MLA Aliev, Rashid and Khanim Nebiyeva. “The A-Integral and Restricted Riesz Transform”. Constructive Mathematical Analysis, vol. 3, no. 3, 2020, pp. 104-12, doi:10.33205/cma.728156.
Vancouver Aliev R, Nebiyeva K. The A-Integral and Restricted Riesz Transform. CMA. 2020;3(3):104-12.