Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 2, 145 - 178, 01.06.2021
https://doi.org/10.33205/cma.853108

Abstract

References

  • A. A. N. Abdou, M. A. Khamsi: Fixed point theorems in modular vector spaces, J. Nonlinear Sci. Appl., 10 (8) (2017), 4046–4057.
  • R. A. Adams, J. J. F. Fournier: Sobolev spaces, second ed., Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, (2003).
  • I. Ahmed, A. Fiorenza, M. R. Formica, A. Gogatishvili and J. M. Rakotoson: Some results related to Lorentz GΓ−spaces and interpolation, J. Math. Anal. Appl., 483 (2) (2020), 123623.
  • Y. Ahmida, I. Chlebicka, P. Gwiazda and A. Youssfi: Gossez’s approximation theorems in Musielak-Orlicz-Sobolev spaces, J. Funct. Anal., 275 (9) (2018), 2538–2571.
  • Y. Ahmida, A. Fiorenza and A. Youssfi: H = W Musielak spaces framework, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 31 (2) (2020), 447–464.
  • Ü. Aksoy, E. Karapınar, ˙I. M. Erhan and V. Rakoˇcevi´c: Meir-Keeler type contractions on modular metric spaces, Filomat, 32 (10) (2018), 3697–3707.
  • M. R. Alfuraidan, M. Bachar and M. A. Khamsi: On monotone contraction mappings in modular function spaces, Fixed Point Theory Appl., 2015:28 (2015).
  • M. R. Alfuraidan, M. A. Khamsi and N. Manav: A fixed point theorem for uniformly Lipschitzian mappings in modular vector spaces, Filomat, 31 (2017), 5435–5444.
  • S. A. R. Al-Mezel, F. R. M. Al-Solamy and Q. H. Ansari: Fixed point theory, variational analysis, and optimization, CRC Press, (2014).
  • J. Albrycht, W. Orlicz: A note on modular spaces. II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 10 (1962), 99–106.
  • C. D. Aliprantis, K. C. Border: Infinite dimensional analysis–A hitchhiker’s guide., third ed., Springer, Berlin, (2006).
  • C. D. Aliprantis, O. Burkinshaw: Locally solid Riesz spaces, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, (1978), Pure and Applied Mathematics, 76.
  • F. Altomare, M. Campiti: Korovkin-type approximation theory and its applications, De Gruyter Studies in Mathematics, 17, Walter de Gruyter & Co., Berlin, (1994).
  • G. Anatriello: Iterated grand and small Lebesgue spaces, Collect. Math., 65 (2) (2014), 273–284.
  • G. Anatriello, A. Fiorenza and G. Vincenzi: Banach function norms via Cauchy polynomials and applications, Internat. J. Math., 26 (10) (2015), 1550083.
  • A. H. Ansari, M. Demma, L. Guran, J. R. Lee and C. Park: Fixed point results for C-class functions in modular metric spaces, J. Fixed Point Theory Appl., 20 (3) (2018), 103.
  • M. Bachar, O. Méndez and M. Bounkhel: Modular uniform convexity of Lebesgue spaces of variable integrability, Symmetry, 10 (12) (2018), 708.
  • C. Bardaro, A. Boccuto, X. Dimitriou and I. Mantellini: Abstract Korovkin-type theorems in modular spaces and applications, Cent. Eur. J. Math., 11 (10) (2013), 1774–1784.
  • C. Bardaro, I. Mantellini: Approximation properties in abstract modular spaces for a class of general sampling-type operators, Appl. Anal., 85 (4) (2006), 383–413.
  • C. Bardaro, I. Mantellini: Korovkin theorem in modular spaces, Comment. Math. (Prace Mat.), 47 (2) (2007), 239–253.
  • C. Bardaro, I. Mantellini: A Korovkin theorem in multivariate modular function spaces, J. Funct. Spaces Appl., 7 (2) (2009), 105–120.
  • C. Bardaro, J. Musielak and G. Vinti: Some modular inequalities related to the Fubini-Tonelli theorem, Proc. A. Razmadze Math. Inst., 118 (1998), 3–19.
  • C. Bardaro, J. Musielak and G. Vinti: Nonlinear integral operators and applications, De Gruyter Series in Nonlinear Analysis and Applications, 9, Walter de Gruyter & Co., Berlin, (2003).
  • C. Bennett, R. Sharpley: Interpolation of operators, Pure and Applied Mathematics, 129, Academic Press, Inc., Boston, MA, (1988).
  • M. Biegert: On a capacity for modular spaces, J. Math. Anal. Appl., 358 (2) (2009), 294–306.
  • A. Boccuto, B. Rieˇcan and M. Vrábelová: Kurzweil-henstock integral in Riesz spaces, Bentham Science Publishers Ltd., (2009).
  • J. Bourgain, H. Brezis and P. Mironescu: A new function space and applications, J. Eur. Math. Soc. (JEMS), 17 (9) (2015), 2083–2101.
  • H. Brezis: Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, (2011).
  • C. Capone, D. Cruz-Uribe and A. Fiorenza: A modular variable Orlicz inequality for the local maximal operator, Georgian Math. J., 25 (2) (2018), 201–206.
  • C. Capone, A. Fiorenza: On small Lebesgue spaces, J. Funct. Spaces Appl., 3 (1) (2005), 73–89.
  • R. E. Castillo, H. Rafeiro: An introductory course in Lebesgue spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, [Cham], (2016).
  • R. Chill, A. Fiorenza and S. Król: Interpolation of nonlinear positive or order preserving operators on Banach lattices, Positivity, 24 (3) (2020), 507–532.
  • V. V. Chistyakov: Modular metric spaces. I. Basic concepts, Nonlinear Anal., 72 (1) (2010), 1–14.
  • V. V. Chistyakov: Modular metric spaces. II. Application to superposition operators, Nonlinear Anal., 72 (1) (2010), 15–30.
  • V. V. Chistyakov: Metric modular spaces, SpringerBriefs in Mathematics, Springer, Cham, (2015), Theory and applications.
  • D. Costarelli, G. Vinti: Approximation results by multivariate sampling Kantorovich series in Musielak-Orlicz spaces, Dolomites Res. Notes Approx. DRNA, 12 (2019), 7–16.
  • D. Cruz-Uribe, G. Di Fratta and A. Fiorenza: Modular inequalities for the maximal operator in variable Lebesgue spaces, Nonlinear Anal., 177 (part A) (2018), 299–311.
  • D. V. Cruz-Uribe, A. Fiorenza: Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis, Birkhäuser, Springer, Heidelberg, (2013), Foundations and harmonic analysis.
  • D. V. Cruz-Uribe, J. M. Martell and C. Pérez: Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications, 215, Birkhäuser/Springer Basel AG, Basel, (2011).
  • B. A. Davey, H. A. Priestley: Introduction to lattices and order, second ed., Cambridge University Press, New York, (2002).
  • F. Demengel, G. Demengel: Functional spaces for the theory of elliptic partial differential equations, Universitext, Springer, London; EDP Sciences, Les Ulis, (2012), Translated from the 2007 French original by Reinie Erné.
  • G. Di Fratta, A. Fiorenza and V. Slastikov: An estimate of the blow-up of Lebesgue norms in the non-tempered case, J. Math. Anal. Appl., 493 (2) (2021), 124550.
  • L. Diening, P. Harjulehto, P. Hästö, and M. R ˚užiˇcka: Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, (2011).
  • L. D’Onofrio, L. Greco, K.-M. Perfekt: C. Sbordone and R. Schiattarella, Atomic decompositions, two stars theorems, and distances for the Bourgain-Brezis-Mironescu space and other big spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37 (3) (2020), 653–661.
  • L. Drewnowski, W. Orlicz: A note on modular spaces. X, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 16 (1968), 809–814.
  • N. Dunford, J. T. Schwartz: Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, (1988), General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication.
  • D. E. Edmunds, W. D. Evans: Hardy operators, function spaces and embeddings, Springer Monographs in Mathematics, Springer-Verlag, Berlin, (2004).
  • D. E. Edmunds, J. Lang and O. Méndez: Differential operators on spaces of variable integrability, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2014).
  • D. E. Edmunds, H. Triebel: Function spaces, entropy numbers, differential operators, Cambridge Tracts in Mathematics, 120, Cambridge University Press, Cambridge, (1996).
  • F. Farroni, A. Fiorenza and R. Giova: A sharp blow-up estimate for the Lebesgue norm, Rev. Mat. Complut., 32 (3) (2019), 745–766.
  • A. Fiorenza: Duality and reflexivity in grand Lebesgue spaces, Collect. Math., 51 (2) (2000), 131–148.
  • A. Fiorenza, M. R. Formica: On the factor opposing the Lebesgue norm in generalized grand Lebesgue spaces, submitted.
  • A. Fiorenza, M. R. Formica and A. Gogatishvili: On grand and small Lebesgue and Sobolev spaces and some applications to PDE’s, Differ. Equ. Appl., 10 (1) (2018), 21–46.
  • A. Fiorenza, M. R. Formica, A. Gogatishvili, T. Kopaliani and J. M. Rakotoson: Characterization of interpolation between grand, small or classical Lebesgue spaces, Nonlinear Anal., 177 (2018), 422–453.
  • A. Fiorenza, F. Giannetti: Removability of zero modular capacity sets, Rev. Mat. Complut., (2020).
  • A. Fiorenza, B. Gupta and P. Jain: The maximal theorem for weighted grand Lebesgue spaces, Studia Math., 188 (2) (2008), 123–133.
  • A. Fiorenza, P. Jain: A family of equivalent norms for lebesgue spaces, Arch. Math., (2020).
  • A. Fiorenza, V. Kokilashvili: Nonlinear Harmonic Analysis of integral operators in weighted grand Lebesgue spaces and applications, Ann. Funct. Anal., 9 (3) (2018), 413–425.
  • A. Fiorenza, V. Kokilashvili and A. Meskhi: Hardy-Littlewood maximal operator in weighted grand variable exponent Lebesgue space, Mediterr. J. Math., 14 (3) (2017), 118.
  • A. Fiorenza, M. Krbec and H. J. Schmeisser: An improvement of dimension-free Sobolev imbeddings in r.i. spaces, J. Funct. Anal., 267 (1) (2014), 243–261.
  • A. Fiorenza, J. M. Rakotoson: New properties of small Lebesgue spaces and their applications, Math. Ann., 326 (3) (2003), 543–561.
  • A. Fiorenza, J. M. Rakotoson: Some estimates in GΓ(p, m, w) spaces, J. Math. Anal. Appl., 340 (2) (2008), 793–805.
  • A. Fiorenza, J. Talponen: Generalizing algebraically defined norms, Ricerche Mat., (2020).
  • R. Fiorenza: Hölder and locally Hölder continuous functions, and open sets of class Ck, Ck,λ, Frontiers in Mathematics, Birkhäuser/Springer, Cham, (2016).
  • I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec: Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics, 92, Longman, Harlow, (1998).
  • D. Gilbarg, N. S. Trudinger: Elliptic partial differential equations of second order, Classics in Mathematics, SpringerVerlag, Berlin, (2001), Reprint of the 1998 edition.
  • A. Gogatishvili, V. Kokilashvili: Criteria of weighted inequalities in Orlicz classes for maximal functions defined on homogeneous type spaces, Georgian Math. J., 1 (6) (1994), 641–673.
  • L. Greco, T. Iwaniec and G. Moscariello: Limits of the improved integrability of the volume forms, Indiana Univ. Math. J., 44 (2) (1995), 305–339.
  • P. Harjulehto, P. Hästö: Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Mathematics, 2236, Springer, Cham, (2019).
  • D. D. Haroske: Envelopes and sharp embeddings of function spaces, Chapman & Hall/CRC Research Notes in Mathematics, 437, Chapman & Hall/CRC, Boca Raton, FL, (2007).
  • D. D. Haroske, H. Triebel: Distributions, Sobolev spaces, elliptic equations, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, (2008).
  • J. Heinonen, T. Kilpeläinen and O. Martio: Nonlinear potential theory of degenerate elliptic equations, Oxford Science Publications, Clarendon Press, (1993).
  • H. Hudzik, L. Maligranda: Amemiya norm equals Orlicz norm in general, Indag. Math. (N.S.), 11 (4) (2000), 573–585.
  • P. Jain, A. Molchanova, M. Singh and S. Vodopyanov: On grand Sobolev spaces and pointwise description of Banach function spaces, Nonlinear Anal., 202 (2021), 112100.
  • A. Kami ´nska: Some remarks on Orlicz-Lorentz spaces, Math. Nachr., 147 (1990), 29–38.
  • A. Kami ´nska: Extreme points in Orlicz-Lorentz spaces, Arch. Math., 55 (1990), 173–180.
  • A. Kami ´nska: Uniform convexity of generalized Lorentz spaces, Arch. Math., 56 (1991), 181–188.
  • A. Kami ´nska, K. Le´snik and Y. Raynaud: Dual spaces to Orlicz-Lorentz spaces, Studia Math., 222 (3) (2014), 229–261.
  • A. N. Karapetyants, S. G. Samko: On grand and small Bergman spaces, Mat. Zametki, 104 (3) (2018), 439–446.
  • M. A. Khamsi: Generalized metric spaces: a survey, J. Fixed Point Theory Appl., 17 (2015), 455–475.
  • M. A. Khamsi, W. M. Kozłowski: Fixed point theory in modular function spaces, Birkhäuser/Springer, Cham, (2015).
  • M. A. Khamsi, W. M. Kozłowski and S. Reich: Fixed point theory in modular function spaces, Nonlinear Anal., 14 (11) (1990), 935–953.
  • T. Kilpeläinen, J. Kinnunen and O. Martio: Sobolev spaces with zero boundary values on metric spaces, Potential Anal., 12 (3) (2000), 233–247.
  • J. Kohonen: Generating modular lattices of up to 30 elements, Order, 36 (3) (2019), 423–435.
  • V. Kokilashvili, M. Krbec: Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publishing Co., Inc., River Edge, NJ, (1991).
  • V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko: Integral operators in non-standard function spaces. Vol. 1, Operator Theory: Advances and Applications, 248, Birkhäuser/Springer, [Cham], (2016), Variable exponent Lebesgue and amalgam spaces.
  • V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko: Integral operators in non-standard function spaces. Vol. 2, Operator Theory: Advances and Applications, 249, Birkhäuser/Springer, [Cham], (2016), Variable exponent Hölder, Morrey-Campanato and grand spaces.
  • A. Kolmogoroff: Zur normierbarkeit eines allgemeinen topologischen linearen raumes, Studia Math., 5 (1934), 29–33.
  • H. König: Measure and integration, Springer-Verlag, Berlin, (1997), An advanced course in basic procedures and applications.
  • S. Koshi: Modulars on semi-ordered linear spaces. II. Approximately additive modulars, J. Fac. Sci. Hokkaido Univ. Ser. I., 13 (1957), 166–200.
  • S. Koshi: On the existence of order-continuous linear functionals in quasi-modular spaces, Math. Ann., 161 (1965), 95–101.
  • S. Koshi, T. Shimogaki: On F-norms of quasi-modular spaces, J. Fac. Sci. Hokkaido Univ. Ser. I, 15 (1961), 202–218.
  • S. Koshi, T. Shimogaki: On quasi-modular spaces, Studia Math., 21 (1961/62), 15–35.
  • W. M. Kozłowski: Notes on modular function spaces. I, II, Comment. Math. Prace Mat., 28 (1) (1988), 87–100, 101–116 (1989).
  • W. M. Kozłowski: Modular function spaces, Monographs and Textbooks in Pure and Applied Mathematics, 122, Marcel Dekker, Inc., New York, (1988).
  • W. M. Kozłowski: Advancements in fixed point theory in modular function spaces, Arab. J. Math. (Springer), 1 (4) (2012), 477–494.
  • W. M. Kozłowski: On modulated topological vector spaces and applications, Bull. Aust. Math. Soc., 101 (2) (2020), 325–332.
  • P. Kranz, W. Wnuk: On the representation of Orlicz lattices, Nederl. Akad. Wetensch. Indag. Math., 43 (4) (1981), 375–383.
  • M. Krbec: Modular interpolation spaces. I, Z. Anal. Anwendungen, 1 (1) (1982), 25–40.
  • A. Kufner: Weighted Sobolev spaces, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, (1985), Translated from the Czech.
  • A. Kufner, O. John and S. Fuˇcík: Function spaces, Noordhoff International Publishing, Leyden; Academia, Prague, (1977), Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis.
  • J. Lindenstrauss, L. Tzafriri: Classical Banach spaces. I, Springer-Verlag, Berlin-New York, (1977), Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 92.
  • J. Lindenstrauss, L. Tzafriri: Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 97, Springer-Verlag, Berlin-New York, (1979), Function spaces.
  • R. D. Luce: Semiorders and a theory of utility discrimination, Econornetrica, 24 (1956), 178–191.
  • W. A. J. Luxemburg: Banach function spaces, Thesis, Technische Hogeschool te Delft, (1955).
  • W. A. J. Luxemburg: Integration with respect to finitely additive measures [Zbl 771:28004], Positive operators, Riesz spaces, and economics (Pasadena, CA, 1990), Springer, Berlin, (1991), 109–150.
  • W. A. J. Luxemburg and A. C. Zaanen: Riesz spaces. Vol. I, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, (1971), North-Holland Mathematical Library.
  • L. Maligranda: MR3889985, Math. Reviews.
  • L. Maligranda: Indices and interpolation, Dissertationes Math., 234 (1984).
  • L. Maligranda: Orlicz spaces and interpolation, Seminários de Matemática [Seminars in Mathematics], 5, Universidade Estadual de Campinas, Departamento de Matemática, Campinas, (1989).
  • L. Maligranda: Simple norm inequalities, Amer. Math. Monthly, 113 (3) (2006), 256–260.
  • L. Maligranda: Some remarks on the triangle inequality for norms, Banach J. Math. Anal., 2 (2) (2008), 31–41.
  • L. Maligranda: Hidegorô Nakano (1909–1974)—on the centenary of his birth, Banach and function spaces III (ISBFS 2009), Yokohama Publ., Yokohama, (2011), 99–171.
  • I. Mantellini, G. Vinti: Approximation results for nonlinear integral operators in modular spaces and applications, Ann. Polon. Math., 81 (1) (2003), 55–71.
  • M. Mastyło: Interpolation of linear operators in Calderón-Lozanovskii spaces, Comment. Math., 26 (2) (1986), 247–256.
  • V. G. Maz’ja: Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, (1985), Translated from the Russian by T. O. Shaposhnikova.
  • S. Mazur, W. Orlicz: On some classes of linear spaces, Studia Math., 17 (1958), 97–119.
  • R. E. Megginson: An introduction to Banach space theory, Graduate texts in Mathematics, 183, Springer-Verlag, New York, (1991).
  • O. Méndez, J. Lang: Analysis on function spaces of Musielak-Orlicz type, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, (2019).
  • A. Meskhi: Measure of non-compactness for integral operators in weighted Lebesgue spaces, Nova Science Publishers, Inc., New York, (2009).
  • P. Meyer-Nieberg: Banach lattices, Universitext, Springer-Verlag, Berlin, (1991).
  • C. Miranda: Istituzioni di analisi funzionale lineare, vol I, Unione Matematica Italiana, (1978).
  • S. J. Montgomery-Smith: Comparison of Orlicz-Lorentz spaces, Studia Math., 103 (2) (1992), 161–189.
  • J. Musielak: Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, (1983).
  • J. Musielak, W. Orlicz: On modular spaces, Studia Math., 18 (1959), 49–65.
  • H. Nakano: Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, (1950).
  • H. Nakano: Modulared linear spaces, J. Fac. Sci. Univ. Tokyo Sect. I, 6 (1951), 85–131.
  • H. Nakano: Topology of linear topological spaces, Maruzen Co., Ltd., Tokyo, (1951).
  • H. Nakano: Generalized modular spaces, Studia Math., 31 (1968), 439–449.
  • H. Nakano: Lp, q modulars, Proc. Amer. Math. Soc., 50 (1975), 201–204.
  • A. Pełczy ´nski, M. Wojciechowski: Sobolev spaces in several variables in L1-type norms are not isomorphic to Banach lattices, Ark. Mat., 40 (2) (2002), 363–382.
  • L. Pick, A. Kufner, O. John and S. Fuˇcík: Function spaces. Vol. 1, extended ed., De Gruyter Series in Nonlinear Analysis and Applications, 14, Walter de Gruyter & Co., Berlin, (2013).
  • J.-M. Rakotoson: Réarrangement relatif, Mathématiques & Applications (Berlin) [Mathematics & Applications], 64, Springer, Berlin, (2008), Un instrument d’estimations dans les problèmes aux limites. [An estimation tool for limit problems].
  • M. M. Rao, Z. D. Ren: Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc., New York, (1991).
  • S. Rolewicz: Metric linear spaces, second ed., Mathematics and its Applications (East European Series), 20, D. Reidel Publishing Co., Dordrecht; PWN—Polish Scientific Publishers, Warsaw, (1985).
  • E. Schechter: Handbook of Analysis and its foundations, Academic Press, Inc., San Diego, CA, (1997).
  • H.-J. Schmeisser, H. Triebel: Topics in Fourier analysis and function spaces, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, (1987).
  • J. Singh, T. D. Narang: Convex linear metric spaces are normable, J. Anal., 28 (3) (2020), 705–709.
  • C. Swartz: An introduction to functional analysis, Monographs and Textbooks in Pure and Applied Mathematics, 157, Marcel Dekker, Inc., New York, (1992).
  • A. Szankowski: A Banach lattice without the approximation property, Israel J. Math., 24 (3–4) (1976), 329–337.
  • H. Triebel: Theory of function spaces. II, Monographs in Mathematics, 84, Birkhäuser Verlag, Basel, (1992).
  • H. Triebel: Interpolation theory, function spaces, differential operators, second ed., Johann Ambrosius Barth, Heidelberg, (1995).
  • H. Triebel: Theory of function spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, (2010), Reprint of 1983 edition [MR0730762], Also published in 1983 by Birkhäuser Verlag [MR0781540].
  • B. Turett: Fenchel-Orlicz spaces, Dissertationes Math. (Rozprawy Mat.) 181 (1980), 55.
  • D. Turkoglu, N. Manav: Fixed point theorems in a new type of modular metric spaces, Fixed Point Theory Appl., 2018:25 (2018).
  • H. Weber: On modular functions, Funct. Approx. Comment. Math., 24 (1996), 35–52.
  • S. Yamamuro: On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc., 90 (1959), 291–311.
  • A. Youssfi, Y. Ahmida: Some approximation results in Musielak-Orlicz spaces, Czechoslovak Math. J., 70 (2) (2020), 453–471.
  • A. C. Zaanen: Introduction to operator theory in Riesz spaces, Springer-Verlag, Berlin, (1997).

Modulars from Nakano onwards

Year 2021, Volume: 4 Issue: 2, 145 - 178, 01.06.2021
https://doi.org/10.33205/cma.853108

Abstract

We discuss and compare a number of notions of modulars appeared in literature, among which there is a selection of the well known ones. We highlight the connections between the various definitions and provide several examples, taken from existing literature, recalling known results and completing the picture with some original considerations

References

  • A. A. N. Abdou, M. A. Khamsi: Fixed point theorems in modular vector spaces, J. Nonlinear Sci. Appl., 10 (8) (2017), 4046–4057.
  • R. A. Adams, J. J. F. Fournier: Sobolev spaces, second ed., Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, (2003).
  • I. Ahmed, A. Fiorenza, M. R. Formica, A. Gogatishvili and J. M. Rakotoson: Some results related to Lorentz GΓ−spaces and interpolation, J. Math. Anal. Appl., 483 (2) (2020), 123623.
  • Y. Ahmida, I. Chlebicka, P. Gwiazda and A. Youssfi: Gossez’s approximation theorems in Musielak-Orlicz-Sobolev spaces, J. Funct. Anal., 275 (9) (2018), 2538–2571.
  • Y. Ahmida, A. Fiorenza and A. Youssfi: H = W Musielak spaces framework, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 31 (2) (2020), 447–464.
  • Ü. Aksoy, E. Karapınar, ˙I. M. Erhan and V. Rakoˇcevi´c: Meir-Keeler type contractions on modular metric spaces, Filomat, 32 (10) (2018), 3697–3707.
  • M. R. Alfuraidan, M. Bachar and M. A. Khamsi: On monotone contraction mappings in modular function spaces, Fixed Point Theory Appl., 2015:28 (2015).
  • M. R. Alfuraidan, M. A. Khamsi and N. Manav: A fixed point theorem for uniformly Lipschitzian mappings in modular vector spaces, Filomat, 31 (2017), 5435–5444.
  • S. A. R. Al-Mezel, F. R. M. Al-Solamy and Q. H. Ansari: Fixed point theory, variational analysis, and optimization, CRC Press, (2014).
  • J. Albrycht, W. Orlicz: A note on modular spaces. II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 10 (1962), 99–106.
  • C. D. Aliprantis, K. C. Border: Infinite dimensional analysis–A hitchhiker’s guide., third ed., Springer, Berlin, (2006).
  • C. D. Aliprantis, O. Burkinshaw: Locally solid Riesz spaces, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, (1978), Pure and Applied Mathematics, 76.
  • F. Altomare, M. Campiti: Korovkin-type approximation theory and its applications, De Gruyter Studies in Mathematics, 17, Walter de Gruyter & Co., Berlin, (1994).
  • G. Anatriello: Iterated grand and small Lebesgue spaces, Collect. Math., 65 (2) (2014), 273–284.
  • G. Anatriello, A. Fiorenza and G. Vincenzi: Banach function norms via Cauchy polynomials and applications, Internat. J. Math., 26 (10) (2015), 1550083.
  • A. H. Ansari, M. Demma, L. Guran, J. R. Lee and C. Park: Fixed point results for C-class functions in modular metric spaces, J. Fixed Point Theory Appl., 20 (3) (2018), 103.
  • M. Bachar, O. Méndez and M. Bounkhel: Modular uniform convexity of Lebesgue spaces of variable integrability, Symmetry, 10 (12) (2018), 708.
  • C. Bardaro, A. Boccuto, X. Dimitriou and I. Mantellini: Abstract Korovkin-type theorems in modular spaces and applications, Cent. Eur. J. Math., 11 (10) (2013), 1774–1784.
  • C. Bardaro, I. Mantellini: Approximation properties in abstract modular spaces for a class of general sampling-type operators, Appl. Anal., 85 (4) (2006), 383–413.
  • C. Bardaro, I. Mantellini: Korovkin theorem in modular spaces, Comment. Math. (Prace Mat.), 47 (2) (2007), 239–253.
  • C. Bardaro, I. Mantellini: A Korovkin theorem in multivariate modular function spaces, J. Funct. Spaces Appl., 7 (2) (2009), 105–120.
  • C. Bardaro, J. Musielak and G. Vinti: Some modular inequalities related to the Fubini-Tonelli theorem, Proc. A. Razmadze Math. Inst., 118 (1998), 3–19.
  • C. Bardaro, J. Musielak and G. Vinti: Nonlinear integral operators and applications, De Gruyter Series in Nonlinear Analysis and Applications, 9, Walter de Gruyter & Co., Berlin, (2003).
  • C. Bennett, R. Sharpley: Interpolation of operators, Pure and Applied Mathematics, 129, Academic Press, Inc., Boston, MA, (1988).
  • M. Biegert: On a capacity for modular spaces, J. Math. Anal. Appl., 358 (2) (2009), 294–306.
  • A. Boccuto, B. Rieˇcan and M. Vrábelová: Kurzweil-henstock integral in Riesz spaces, Bentham Science Publishers Ltd., (2009).
  • J. Bourgain, H. Brezis and P. Mironescu: A new function space and applications, J. Eur. Math. Soc. (JEMS), 17 (9) (2015), 2083–2101.
  • H. Brezis: Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, (2011).
  • C. Capone, D. Cruz-Uribe and A. Fiorenza: A modular variable Orlicz inequality for the local maximal operator, Georgian Math. J., 25 (2) (2018), 201–206.
  • C. Capone, A. Fiorenza: On small Lebesgue spaces, J. Funct. Spaces Appl., 3 (1) (2005), 73–89.
  • R. E. Castillo, H. Rafeiro: An introductory course in Lebesgue spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, [Cham], (2016).
  • R. Chill, A. Fiorenza and S. Król: Interpolation of nonlinear positive or order preserving operators on Banach lattices, Positivity, 24 (3) (2020), 507–532.
  • V. V. Chistyakov: Modular metric spaces. I. Basic concepts, Nonlinear Anal., 72 (1) (2010), 1–14.
  • V. V. Chistyakov: Modular metric spaces. II. Application to superposition operators, Nonlinear Anal., 72 (1) (2010), 15–30.
  • V. V. Chistyakov: Metric modular spaces, SpringerBriefs in Mathematics, Springer, Cham, (2015), Theory and applications.
  • D. Costarelli, G. Vinti: Approximation results by multivariate sampling Kantorovich series in Musielak-Orlicz spaces, Dolomites Res. Notes Approx. DRNA, 12 (2019), 7–16.
  • D. Cruz-Uribe, G. Di Fratta and A. Fiorenza: Modular inequalities for the maximal operator in variable Lebesgue spaces, Nonlinear Anal., 177 (part A) (2018), 299–311.
  • D. V. Cruz-Uribe, A. Fiorenza: Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis, Birkhäuser, Springer, Heidelberg, (2013), Foundations and harmonic analysis.
  • D. V. Cruz-Uribe, J. M. Martell and C. Pérez: Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications, 215, Birkhäuser/Springer Basel AG, Basel, (2011).
  • B. A. Davey, H. A. Priestley: Introduction to lattices and order, second ed., Cambridge University Press, New York, (2002).
  • F. Demengel, G. Demengel: Functional spaces for the theory of elliptic partial differential equations, Universitext, Springer, London; EDP Sciences, Les Ulis, (2012), Translated from the 2007 French original by Reinie Erné.
  • G. Di Fratta, A. Fiorenza and V. Slastikov: An estimate of the blow-up of Lebesgue norms in the non-tempered case, J. Math. Anal. Appl., 493 (2) (2021), 124550.
  • L. Diening, P. Harjulehto, P. Hästö, and M. R ˚užiˇcka: Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, (2011).
  • L. D’Onofrio, L. Greco, K.-M. Perfekt: C. Sbordone and R. Schiattarella, Atomic decompositions, two stars theorems, and distances for the Bourgain-Brezis-Mironescu space and other big spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37 (3) (2020), 653–661.
  • L. Drewnowski, W. Orlicz: A note on modular spaces. X, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 16 (1968), 809–814.
  • N. Dunford, J. T. Schwartz: Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, (1988), General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication.
  • D. E. Edmunds, W. D. Evans: Hardy operators, function spaces and embeddings, Springer Monographs in Mathematics, Springer-Verlag, Berlin, (2004).
  • D. E. Edmunds, J. Lang and O. Méndez: Differential operators on spaces of variable integrability, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2014).
  • D. E. Edmunds, H. Triebel: Function spaces, entropy numbers, differential operators, Cambridge Tracts in Mathematics, 120, Cambridge University Press, Cambridge, (1996).
  • F. Farroni, A. Fiorenza and R. Giova: A sharp blow-up estimate for the Lebesgue norm, Rev. Mat. Complut., 32 (3) (2019), 745–766.
  • A. Fiorenza: Duality and reflexivity in grand Lebesgue spaces, Collect. Math., 51 (2) (2000), 131–148.
  • A. Fiorenza, M. R. Formica: On the factor opposing the Lebesgue norm in generalized grand Lebesgue spaces, submitted.
  • A. Fiorenza, M. R. Formica and A. Gogatishvili: On grand and small Lebesgue and Sobolev spaces and some applications to PDE’s, Differ. Equ. Appl., 10 (1) (2018), 21–46.
  • A. Fiorenza, M. R. Formica, A. Gogatishvili, T. Kopaliani and J. M. Rakotoson: Characterization of interpolation between grand, small or classical Lebesgue spaces, Nonlinear Anal., 177 (2018), 422–453.
  • A. Fiorenza, F. Giannetti: Removability of zero modular capacity sets, Rev. Mat. Complut., (2020).
  • A. Fiorenza, B. Gupta and P. Jain: The maximal theorem for weighted grand Lebesgue spaces, Studia Math., 188 (2) (2008), 123–133.
  • A. Fiorenza, P. Jain: A family of equivalent norms for lebesgue spaces, Arch. Math., (2020).
  • A. Fiorenza, V. Kokilashvili: Nonlinear Harmonic Analysis of integral operators in weighted grand Lebesgue spaces and applications, Ann. Funct. Anal., 9 (3) (2018), 413–425.
  • A. Fiorenza, V. Kokilashvili and A. Meskhi: Hardy-Littlewood maximal operator in weighted grand variable exponent Lebesgue space, Mediterr. J. Math., 14 (3) (2017), 118.
  • A. Fiorenza, M. Krbec and H. J. Schmeisser: An improvement of dimension-free Sobolev imbeddings in r.i. spaces, J. Funct. Anal., 267 (1) (2014), 243–261.
  • A. Fiorenza, J. M. Rakotoson: New properties of small Lebesgue spaces and their applications, Math. Ann., 326 (3) (2003), 543–561.
  • A. Fiorenza, J. M. Rakotoson: Some estimates in GΓ(p, m, w) spaces, J. Math. Anal. Appl., 340 (2) (2008), 793–805.
  • A. Fiorenza, J. Talponen: Generalizing algebraically defined norms, Ricerche Mat., (2020).
  • R. Fiorenza: Hölder and locally Hölder continuous functions, and open sets of class Ck, Ck,λ, Frontiers in Mathematics, Birkhäuser/Springer, Cham, (2016).
  • I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec: Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics, 92, Longman, Harlow, (1998).
  • D. Gilbarg, N. S. Trudinger: Elliptic partial differential equations of second order, Classics in Mathematics, SpringerVerlag, Berlin, (2001), Reprint of the 1998 edition.
  • A. Gogatishvili, V. Kokilashvili: Criteria of weighted inequalities in Orlicz classes for maximal functions defined on homogeneous type spaces, Georgian Math. J., 1 (6) (1994), 641–673.
  • L. Greco, T. Iwaniec and G. Moscariello: Limits of the improved integrability of the volume forms, Indiana Univ. Math. J., 44 (2) (1995), 305–339.
  • P. Harjulehto, P. Hästö: Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Mathematics, 2236, Springer, Cham, (2019).
  • D. D. Haroske: Envelopes and sharp embeddings of function spaces, Chapman & Hall/CRC Research Notes in Mathematics, 437, Chapman & Hall/CRC, Boca Raton, FL, (2007).
  • D. D. Haroske, H. Triebel: Distributions, Sobolev spaces, elliptic equations, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, (2008).
  • J. Heinonen, T. Kilpeläinen and O. Martio: Nonlinear potential theory of degenerate elliptic equations, Oxford Science Publications, Clarendon Press, (1993).
  • H. Hudzik, L. Maligranda: Amemiya norm equals Orlicz norm in general, Indag. Math. (N.S.), 11 (4) (2000), 573–585.
  • P. Jain, A. Molchanova, M. Singh and S. Vodopyanov: On grand Sobolev spaces and pointwise description of Banach function spaces, Nonlinear Anal., 202 (2021), 112100.
  • A. Kami ´nska: Some remarks on Orlicz-Lorentz spaces, Math. Nachr., 147 (1990), 29–38.
  • A. Kami ´nska: Extreme points in Orlicz-Lorentz spaces, Arch. Math., 55 (1990), 173–180.
  • A. Kami ´nska: Uniform convexity of generalized Lorentz spaces, Arch. Math., 56 (1991), 181–188.
  • A. Kami ´nska, K. Le´snik and Y. Raynaud: Dual spaces to Orlicz-Lorentz spaces, Studia Math., 222 (3) (2014), 229–261.
  • A. N. Karapetyants, S. G. Samko: On grand and small Bergman spaces, Mat. Zametki, 104 (3) (2018), 439–446.
  • M. A. Khamsi: Generalized metric spaces: a survey, J. Fixed Point Theory Appl., 17 (2015), 455–475.
  • M. A. Khamsi, W. M. Kozłowski: Fixed point theory in modular function spaces, Birkhäuser/Springer, Cham, (2015).
  • M. A. Khamsi, W. M. Kozłowski and S. Reich: Fixed point theory in modular function spaces, Nonlinear Anal., 14 (11) (1990), 935–953.
  • T. Kilpeläinen, J. Kinnunen and O. Martio: Sobolev spaces with zero boundary values on metric spaces, Potential Anal., 12 (3) (2000), 233–247.
  • J. Kohonen: Generating modular lattices of up to 30 elements, Order, 36 (3) (2019), 423–435.
  • V. Kokilashvili, M. Krbec: Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publishing Co., Inc., River Edge, NJ, (1991).
  • V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko: Integral operators in non-standard function spaces. Vol. 1, Operator Theory: Advances and Applications, 248, Birkhäuser/Springer, [Cham], (2016), Variable exponent Lebesgue and amalgam spaces.
  • V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko: Integral operators in non-standard function spaces. Vol. 2, Operator Theory: Advances and Applications, 249, Birkhäuser/Springer, [Cham], (2016), Variable exponent Hölder, Morrey-Campanato and grand spaces.
  • A. Kolmogoroff: Zur normierbarkeit eines allgemeinen topologischen linearen raumes, Studia Math., 5 (1934), 29–33.
  • H. König: Measure and integration, Springer-Verlag, Berlin, (1997), An advanced course in basic procedures and applications.
  • S. Koshi: Modulars on semi-ordered linear spaces. II. Approximately additive modulars, J. Fac. Sci. Hokkaido Univ. Ser. I., 13 (1957), 166–200.
  • S. Koshi: On the existence of order-continuous linear functionals in quasi-modular spaces, Math. Ann., 161 (1965), 95–101.
  • S. Koshi, T. Shimogaki: On F-norms of quasi-modular spaces, J. Fac. Sci. Hokkaido Univ. Ser. I, 15 (1961), 202–218.
  • S. Koshi, T. Shimogaki: On quasi-modular spaces, Studia Math., 21 (1961/62), 15–35.
  • W. M. Kozłowski: Notes on modular function spaces. I, II, Comment. Math. Prace Mat., 28 (1) (1988), 87–100, 101–116 (1989).
  • W. M. Kozłowski: Modular function spaces, Monographs and Textbooks in Pure and Applied Mathematics, 122, Marcel Dekker, Inc., New York, (1988).
  • W. M. Kozłowski: Advancements in fixed point theory in modular function spaces, Arab. J. Math. (Springer), 1 (4) (2012), 477–494.
  • W. M. Kozłowski: On modulated topological vector spaces and applications, Bull. Aust. Math. Soc., 101 (2) (2020), 325–332.
  • P. Kranz, W. Wnuk: On the representation of Orlicz lattices, Nederl. Akad. Wetensch. Indag. Math., 43 (4) (1981), 375–383.
  • M. Krbec: Modular interpolation spaces. I, Z. Anal. Anwendungen, 1 (1) (1982), 25–40.
  • A. Kufner: Weighted Sobolev spaces, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, (1985), Translated from the Czech.
  • A. Kufner, O. John and S. Fuˇcík: Function spaces, Noordhoff International Publishing, Leyden; Academia, Prague, (1977), Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis.
  • J. Lindenstrauss, L. Tzafriri: Classical Banach spaces. I, Springer-Verlag, Berlin-New York, (1977), Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 92.
  • J. Lindenstrauss, L. Tzafriri: Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 97, Springer-Verlag, Berlin-New York, (1979), Function spaces.
  • R. D. Luce: Semiorders and a theory of utility discrimination, Econornetrica, 24 (1956), 178–191.
  • W. A. J. Luxemburg: Banach function spaces, Thesis, Technische Hogeschool te Delft, (1955).
  • W. A. J. Luxemburg: Integration with respect to finitely additive measures [Zbl 771:28004], Positive operators, Riesz spaces, and economics (Pasadena, CA, 1990), Springer, Berlin, (1991), 109–150.
  • W. A. J. Luxemburg and A. C. Zaanen: Riesz spaces. Vol. I, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, (1971), North-Holland Mathematical Library.
  • L. Maligranda: MR3889985, Math. Reviews.
  • L. Maligranda: Indices and interpolation, Dissertationes Math., 234 (1984).
  • L. Maligranda: Orlicz spaces and interpolation, Seminários de Matemática [Seminars in Mathematics], 5, Universidade Estadual de Campinas, Departamento de Matemática, Campinas, (1989).
  • L. Maligranda: Simple norm inequalities, Amer. Math. Monthly, 113 (3) (2006), 256–260.
  • L. Maligranda: Some remarks on the triangle inequality for norms, Banach J. Math. Anal., 2 (2) (2008), 31–41.
  • L. Maligranda: Hidegorô Nakano (1909–1974)—on the centenary of his birth, Banach and function spaces III (ISBFS 2009), Yokohama Publ., Yokohama, (2011), 99–171.
  • I. Mantellini, G. Vinti: Approximation results for nonlinear integral operators in modular spaces and applications, Ann. Polon. Math., 81 (1) (2003), 55–71.
  • M. Mastyło: Interpolation of linear operators in Calderón-Lozanovskii spaces, Comment. Math., 26 (2) (1986), 247–256.
  • V. G. Maz’ja: Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, (1985), Translated from the Russian by T. O. Shaposhnikova.
  • S. Mazur, W. Orlicz: On some classes of linear spaces, Studia Math., 17 (1958), 97–119.
  • R. E. Megginson: An introduction to Banach space theory, Graduate texts in Mathematics, 183, Springer-Verlag, New York, (1991).
  • O. Méndez, J. Lang: Analysis on function spaces of Musielak-Orlicz type, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, (2019).
  • A. Meskhi: Measure of non-compactness for integral operators in weighted Lebesgue spaces, Nova Science Publishers, Inc., New York, (2009).
  • P. Meyer-Nieberg: Banach lattices, Universitext, Springer-Verlag, Berlin, (1991).
  • C. Miranda: Istituzioni di analisi funzionale lineare, vol I, Unione Matematica Italiana, (1978).
  • S. J. Montgomery-Smith: Comparison of Orlicz-Lorentz spaces, Studia Math., 103 (2) (1992), 161–189.
  • J. Musielak: Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, (1983).
  • J. Musielak, W. Orlicz: On modular spaces, Studia Math., 18 (1959), 49–65.
  • H. Nakano: Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, (1950).
  • H. Nakano: Modulared linear spaces, J. Fac. Sci. Univ. Tokyo Sect. I, 6 (1951), 85–131.
  • H. Nakano: Topology of linear topological spaces, Maruzen Co., Ltd., Tokyo, (1951).
  • H. Nakano: Generalized modular spaces, Studia Math., 31 (1968), 439–449.
  • H. Nakano: Lp, q modulars, Proc. Amer. Math. Soc., 50 (1975), 201–204.
  • A. Pełczy ´nski, M. Wojciechowski: Sobolev spaces in several variables in L1-type norms are not isomorphic to Banach lattices, Ark. Mat., 40 (2) (2002), 363–382.
  • L. Pick, A. Kufner, O. John and S. Fuˇcík: Function spaces. Vol. 1, extended ed., De Gruyter Series in Nonlinear Analysis and Applications, 14, Walter de Gruyter & Co., Berlin, (2013).
  • J.-M. Rakotoson: Réarrangement relatif, Mathématiques & Applications (Berlin) [Mathematics & Applications], 64, Springer, Berlin, (2008), Un instrument d’estimations dans les problèmes aux limites. [An estimation tool for limit problems].
  • M. M. Rao, Z. D. Ren: Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc., New York, (1991).
  • S. Rolewicz: Metric linear spaces, second ed., Mathematics and its Applications (East European Series), 20, D. Reidel Publishing Co., Dordrecht; PWN—Polish Scientific Publishers, Warsaw, (1985).
  • E. Schechter: Handbook of Analysis and its foundations, Academic Press, Inc., San Diego, CA, (1997).
  • H.-J. Schmeisser, H. Triebel: Topics in Fourier analysis and function spaces, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, (1987).
  • J. Singh, T. D. Narang: Convex linear metric spaces are normable, J. Anal., 28 (3) (2020), 705–709.
  • C. Swartz: An introduction to functional analysis, Monographs and Textbooks in Pure and Applied Mathematics, 157, Marcel Dekker, Inc., New York, (1992).
  • A. Szankowski: A Banach lattice without the approximation property, Israel J. Math., 24 (3–4) (1976), 329–337.
  • H. Triebel: Theory of function spaces. II, Monographs in Mathematics, 84, Birkhäuser Verlag, Basel, (1992).
  • H. Triebel: Interpolation theory, function spaces, differential operators, second ed., Johann Ambrosius Barth, Heidelberg, (1995).
  • H. Triebel: Theory of function spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, (2010), Reprint of 1983 edition [MR0730762], Also published in 1983 by Birkhäuser Verlag [MR0781540].
  • B. Turett: Fenchel-Orlicz spaces, Dissertationes Math. (Rozprawy Mat.) 181 (1980), 55.
  • D. Turkoglu, N. Manav: Fixed point theorems in a new type of modular metric spaces, Fixed Point Theory Appl., 2018:25 (2018).
  • H. Weber: On modular functions, Funct. Approx. Comment. Math., 24 (1996), 35–52.
  • S. Yamamuro: On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc., 90 (1959), 291–311.
  • A. Youssfi, Y. Ahmida: Some approximation results in Musielak-Orlicz spaces, Czechoslovak Math. J., 70 (2) (2020), 453–471.
  • A. C. Zaanen: Introduction to operator theory in Riesz spaces, Springer-Verlag, Berlin, (1997).
There are 149 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Alberto Fıorenza 0000-0003-2240-5423

Publication Date June 1, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Fıorenza, A. (2021). Modulars from Nakano onwards. Constructive Mathematical Analysis, 4(2), 145-178. https://doi.org/10.33205/cma.853108
AMA Fıorenza A. Modulars from Nakano onwards. CMA. June 2021;4(2):145-178. doi:10.33205/cma.853108
Chicago Fıorenza, Alberto. “Modulars from Nakano Onwards”. Constructive Mathematical Analysis 4, no. 2 (June 2021): 145-78. https://doi.org/10.33205/cma.853108.
EndNote Fıorenza A (June 1, 2021) Modulars from Nakano onwards. Constructive Mathematical Analysis 4 2 145–178.
IEEE A. Fıorenza, “Modulars from Nakano onwards”, CMA, vol. 4, no. 2, pp. 145–178, 2021, doi: 10.33205/cma.853108.
ISNAD Fıorenza, Alberto. “Modulars from Nakano Onwards”. Constructive Mathematical Analysis 4/2 (June 2021), 145-178. https://doi.org/10.33205/cma.853108.
JAMA Fıorenza A. Modulars from Nakano onwards. CMA. 2021;4:145–178.
MLA Fıorenza, Alberto. “Modulars from Nakano Onwards”. Constructive Mathematical Analysis, vol. 4, no. 2, 2021, pp. 145-78, doi:10.33205/cma.853108.
Vancouver Fıorenza A. Modulars from Nakano onwards. CMA. 2021;4(2):145-78.