Research Article
BibTex RIS Cite

Sequential Abstract Generalized Right Side Fractional Landau Inequalities

Year 2021, Volume: 4 Issue: 3, 274 - 290, 16.09.2021
https://doi.org/10.33205/cma.817692

Abstract

We give uniform and Lp Caputo-Bochner abstract sequential generalized right fractional Landau inequalities over $\mathbb{R}_{-}$. These estimates the size of second and third sequential abstract generalized right fractional derivatives of a Banach space valued function over $\mathbb{R}_{-}$. We give an application when the basic fractional order is 1

References

  • A. A. Aljinovic, Lj. Marangunic and J. Pecaric: On Landau type inequalities via Ostrowski inequalities, Nonlinear Funct. Anal. Appl., 10 (4) (2005), 565-579.
  • G. A. Anastassiou, Fractional Differentiation inequalities, Research monograph, Springer, New York, (2009).
  • G. A. Anastassiou: Advances on Fractional Inequalities, Springer, New York, (2011).
  • G. A. Anastassiou: Intelligent Computations: Abstract Fractional Calculus, Inequalities, Approximations, Springer, Heidelberg, New York, (2018).
  • N. S. Barnett, S. S. Dragomir: Some Landau type inequalities for functions whose derivatives are of locally bounded variation, Tamkang Journal of Mathematics, 37, (4), 301-308, winter (2006).
  • Z. Ditzian: Remarks, questions and conjectures on Landau-Kolmogorov-type inequalities, Math. Inequal. Appl., 3 (2000), 15-24.
  • G. H. Hardy, J.E. Littlewood: Some integral inequalities connected with the calculus of variations, Quart. J. Math. Oxford Ser. 3 (1932), 241-252.
  • G. H. Hardy, E. Landau and J.E. Littlewood: Some inequalities satisfied by the integrals or derivatives of real or analytic functions, Math. Z., 39 (1935), 677-695.
  • R. R. Kallman, G. C. Rota: On the inequality ||f′||2 ≤ 4 ||f|| ||f′′||, in Inequalities, Vol. II, (O. Shisha, Ed.), 187-192, Academic Press, New York, (1970).
  • E. Landau: Einige Ungleichungen für zweimal differentzierban funktionen, Proc. London Math. Soc., 13 (1913), 43-49.
  • J. Mikusinski: The Bochner integral, Academic Press, New York, (1978).
  • G. E. Shilov: Elementary Functional Analysis, Dover Publications Inc., New York, (1996).
Year 2021, Volume: 4 Issue: 3, 274 - 290, 16.09.2021
https://doi.org/10.33205/cma.817692

Abstract

References

  • A. A. Aljinovic, Lj. Marangunic and J. Pecaric: On Landau type inequalities via Ostrowski inequalities, Nonlinear Funct. Anal. Appl., 10 (4) (2005), 565-579.
  • G. A. Anastassiou, Fractional Differentiation inequalities, Research monograph, Springer, New York, (2009).
  • G. A. Anastassiou: Advances on Fractional Inequalities, Springer, New York, (2011).
  • G. A. Anastassiou: Intelligent Computations: Abstract Fractional Calculus, Inequalities, Approximations, Springer, Heidelberg, New York, (2018).
  • N. S. Barnett, S. S. Dragomir: Some Landau type inequalities for functions whose derivatives are of locally bounded variation, Tamkang Journal of Mathematics, 37, (4), 301-308, winter (2006).
  • Z. Ditzian: Remarks, questions and conjectures on Landau-Kolmogorov-type inequalities, Math. Inequal. Appl., 3 (2000), 15-24.
  • G. H. Hardy, J.E. Littlewood: Some integral inequalities connected with the calculus of variations, Quart. J. Math. Oxford Ser. 3 (1932), 241-252.
  • G. H. Hardy, E. Landau and J.E. Littlewood: Some inequalities satisfied by the integrals or derivatives of real or analytic functions, Math. Z., 39 (1935), 677-695.
  • R. R. Kallman, G. C. Rota: On the inequality ||f′||2 ≤ 4 ||f|| ||f′′||, in Inequalities, Vol. II, (O. Shisha, Ed.), 187-192, Academic Press, New York, (1970).
  • E. Landau: Einige Ungleichungen für zweimal differentzierban funktionen, Proc. London Math. Soc., 13 (1913), 43-49.
  • J. Mikusinski: The Bochner integral, Academic Press, New York, (1978).
  • G. E. Shilov: Elementary Functional Analysis, Dover Publications Inc., New York, (1996).
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

George Anastassıou 0000-0002-3781-9824

Publication Date September 16, 2021
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

APA Anastassıou, G. (2021). Sequential Abstract Generalized Right Side Fractional Landau Inequalities. Constructive Mathematical Analysis, 4(3), 274-290. https://doi.org/10.33205/cma.817692
AMA Anastassıou G. Sequential Abstract Generalized Right Side Fractional Landau Inequalities. CMA. September 2021;4(3):274-290. doi:10.33205/cma.817692
Chicago Anastassıou, George. “Sequential Abstract Generalized Right Side Fractional Landau Inequalities”. Constructive Mathematical Analysis 4, no. 3 (September 2021): 274-90. https://doi.org/10.33205/cma.817692.
EndNote Anastassıou G (September 1, 2021) Sequential Abstract Generalized Right Side Fractional Landau Inequalities. Constructive Mathematical Analysis 4 3 274–290.
IEEE G. Anastassıou, “Sequential Abstract Generalized Right Side Fractional Landau Inequalities”, CMA, vol. 4, no. 3, pp. 274–290, 2021, doi: 10.33205/cma.817692.
ISNAD Anastassıou, George. “Sequential Abstract Generalized Right Side Fractional Landau Inequalities”. Constructive Mathematical Analysis 4/3 (September 2021), 274-290. https://doi.org/10.33205/cma.817692.
JAMA Anastassıou G. Sequential Abstract Generalized Right Side Fractional Landau Inequalities. CMA. 2021;4:274–290.
MLA Anastassıou, George. “Sequential Abstract Generalized Right Side Fractional Landau Inequalities”. Constructive Mathematical Analysis, vol. 4, no. 3, 2021, pp. 274-90, doi:10.33205/cma.817692.
Vancouver Anastassıou G. Sequential Abstract Generalized Right Side Fractional Landau Inequalities. CMA. 2021;4(3):274-90.