Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 4, 420 - 427, 13.12.2021
https://doi.org/10.33205/cma.1029202

Abstract

References

  • El H. El Abdalaoui: On the spectral type of rank one flows and Banach problem with calculus of generalized Riesz products on the real line, arXiv:2007.03684 [math.DS].
  • I. Assani: Wiener-Wintner property of the helical transform, Ergod. Th. & Dynam. Sys., 10 (1992), 185-194.
  • A. Below, V. Losert: The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc., 288 (1985), 307-345.
  • J. Bourgain: Double recurrence and almost sure convergence , J. reine angew. Math., 404 (1990), 140-161.
  • A. Deljunco, D. Rudolph: On ergodic actions whose self joining are graphs, Ergod. Th. & Dynam. Sys., 7 (1987), 531-557.
  • H. Furstenberg: Stationary process and prediction theory , Ann. Math. Studies, 44 Princeton University Press, Princeton (1960).
  • H. Furstenberg: Disjointness in ergodic theory, minimal sets and problem in diophantine approximation, Math. Sys. Theory, 1 (1960), 1-49.
  • F. Hahn, W. Parry: Some characteristic properties od dynamical system with quasi-discrete spectrum , Math. Sys. Theory, 2 (1968), 179-190.
  • M. Lacey, E. Terwilleger: A Wiener–Wintner theorem for the Hilbert transform, Ark. Mat., 46 (2) (2008), 315-336.
  • E. Lesigne: Un théorème de disjonction de systèmes dynamiques et une généralisation du théorème egodique de Wiener-Wintner, Ergod. Th. & Dynam. Sys., 10 (1990), 513-521.
  • E. Lesigne: Spectre quasi-discret et théorème egodique deWiener-Wintner pour les polynômes, Ergod. Th. & Dynam. Sys., 13 (1993), 767-784.
  • E. Lindenstrauss: Pointwise ergodic theorem for amenable groups, Invent. Math., 146 (2) (2001), 259-295..
  • D. Ornstein, B. Weiss: Subsequences ergodic theorems for amenable groups, Isr. J. Maths., 79 (1992), 113-127.
  • J-P. Thouvenot: Some properties and applications of joinings in ergodic theory, In Ergodic Theory and its connections with Harmonic Analysis (Proc. of Alexandria conference), K. E. Petersen and I. Salama, Eds, L.M.S. lectures notes 205, Cambridge Univ. Press, Cambridge (1995), 207-235.
  • N. Wiener, A. Wintner: Harmonic analysis and ergodic theory , Amer. J. Math., 63 (1941), 415-426.

van der Corput inequality for real line and Wiener-Wintner theorem for amenable groups

Year 2021, Volume: 4 Issue: 4, 420 - 427, 13.12.2021
https://doi.org/10.33205/cma.1029202

Abstract

We extend the classical van der Corput inequality to the real line. As a consequence, we obtain a simple proof of the Wiener-Wintner theorem for the RR-action which assert that for any family of maps (Tt)tR(Tt)t∈R acting on
the Lebesgue measure space (Ω,A,μ)(Ω,A,μ), where μμ is a probability measure and for any tRt∈R, TtTt is measure-preserving transformation on measure space (Ω,A,μ)(Ω,A,μ) with
TtTs=Tt+sTt∘Ts=Tt+s, for any t,sRt,s∈R. Then, for any
fL1(μ)f∈L1(μ), there is a single null set off which  $\displaystyle \lim_{T \rightarrow +\infty} \frac{1}{T}\int_{0}^{T} f(T_t\omega) e^{2 i \pi \theta t} dt$

limT→+∞1T∫0Tf(Ttω)e2iπθtdt

exists for all θθ∈\RRR. We further present the joining proof of the amenable group version of Wiener-Wintner theorem due to Ornstein and Weiss.

References

  • El H. El Abdalaoui: On the spectral type of rank one flows and Banach problem with calculus of generalized Riesz products on the real line, arXiv:2007.03684 [math.DS].
  • I. Assani: Wiener-Wintner property of the helical transform, Ergod. Th. & Dynam. Sys., 10 (1992), 185-194.
  • A. Below, V. Losert: The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc., 288 (1985), 307-345.
  • J. Bourgain: Double recurrence and almost sure convergence , J. reine angew. Math., 404 (1990), 140-161.
  • A. Deljunco, D. Rudolph: On ergodic actions whose self joining are graphs, Ergod. Th. & Dynam. Sys., 7 (1987), 531-557.
  • H. Furstenberg: Stationary process and prediction theory , Ann. Math. Studies, 44 Princeton University Press, Princeton (1960).
  • H. Furstenberg: Disjointness in ergodic theory, minimal sets and problem in diophantine approximation, Math. Sys. Theory, 1 (1960), 1-49.
  • F. Hahn, W. Parry: Some characteristic properties od dynamical system with quasi-discrete spectrum , Math. Sys. Theory, 2 (1968), 179-190.
  • M. Lacey, E. Terwilleger: A Wiener–Wintner theorem for the Hilbert transform, Ark. Mat., 46 (2) (2008), 315-336.
  • E. Lesigne: Un théorème de disjonction de systèmes dynamiques et une généralisation du théorème egodique de Wiener-Wintner, Ergod. Th. & Dynam. Sys., 10 (1990), 513-521.
  • E. Lesigne: Spectre quasi-discret et théorème egodique deWiener-Wintner pour les polynômes, Ergod. Th. & Dynam. Sys., 13 (1993), 767-784.
  • E. Lindenstrauss: Pointwise ergodic theorem for amenable groups, Invent. Math., 146 (2) (2001), 259-295..
  • D. Ornstein, B. Weiss: Subsequences ergodic theorems for amenable groups, Isr. J. Maths., 79 (1992), 113-127.
  • J-P. Thouvenot: Some properties and applications of joinings in ergodic theory, In Ergodic Theory and its connections with Harmonic Analysis (Proc. of Alexandria conference), K. E. Petersen and I. Salama, Eds, L.M.S. lectures notes 205, Cambridge Univ. Press, Cambridge (1995), 207-235.
  • N. Wiener, A. Wintner: Harmonic analysis and ergodic theory , Amer. J. Math., 63 (1941), 415-426.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

El Abdalaoui El Houcein 0000-0003-2005-1852

Publication Date December 13, 2021
Published in Issue Year 2021 Volume: 4 Issue: 4

Cite

APA El Houcein, E. A. (2021). van der Corput inequality for real line and Wiener-Wintner theorem for amenable groups. Constructive Mathematical Analysis, 4(4), 420-427. https://doi.org/10.33205/cma.1029202
AMA El Houcein EA. van der Corput inequality for real line and Wiener-Wintner theorem for amenable groups. CMA. December 2021;4(4):420-427. doi:10.33205/cma.1029202
Chicago El Houcein, El Abdalaoui. “Van Der Corput Inequality for Real Line and Wiener-Wintner Theorem for Amenable Groups”. Constructive Mathematical Analysis 4, no. 4 (December 2021): 420-27. https://doi.org/10.33205/cma.1029202.
EndNote El Houcein EA (December 1, 2021) van der Corput inequality for real line and Wiener-Wintner theorem for amenable groups. Constructive Mathematical Analysis 4 4 420–427.
IEEE E. A. El Houcein, “van der Corput inequality for real line and Wiener-Wintner theorem for amenable groups”, CMA, vol. 4, no. 4, pp. 420–427, 2021, doi: 10.33205/cma.1029202.
ISNAD El Houcein, El Abdalaoui. “Van Der Corput Inequality for Real Line and Wiener-Wintner Theorem for Amenable Groups”. Constructive Mathematical Analysis 4/4 (December 2021), 420-427. https://doi.org/10.33205/cma.1029202.
JAMA El Houcein EA. van der Corput inequality for real line and Wiener-Wintner theorem for amenable groups. CMA. 2021;4:420–427.
MLA El Houcein, El Abdalaoui. “Van Der Corput Inequality for Real Line and Wiener-Wintner Theorem for Amenable Groups”. Constructive Mathematical Analysis, vol. 4, no. 4, 2021, pp. 420-7, doi:10.33205/cma.1029202.
Vancouver El Houcein EA. van der Corput inequality for real line and Wiener-Wintner theorem for amenable groups. CMA. 2021;4(4):420-7.