Research Article
BibTex RIS Cite

Maximal extensions of a linear functional

Year 2023, Volume: 6 Issue: 4, 198 - 209, 15.12.2023
https://doi.org/10.33205/cma.1310238

Abstract

Extensions of a positive hermitian linear functional $\omega$, defined on a dense *-subalgebra $\mathfrak{A_{0}}$ of a topological *-algebra $\mathfrak{A}[\tau]$ are analyzed. It turns out that their maximal extension as linear functionals or hermitian linear functional are everywhere defined. The situation however changes deeply if one looks for positive extensions. The case of fully positive and widely positive extensions considered in [1] is rivisited from this point of view. Examples mostly taken from the theory of integration are discussed.

References

  • A. Bikchentaev: The algebra of thin measurable operators is directly finite, Constr. Math. Anal., 6 (1) (2023), 1–5.
  • F. Burderi, C. Trapani and S.Triolo: Extensions of hermitian linear functionals, Banach J. Math. Anal., 16 (3) (2022), 45.
  • B. Bongiorno, C. Trapani and S.Triolo: Extensions of positive linea functionals on a Topological *-algebra, Rocky Mountain Journal of Mathematics, 40 (6) (2010), 1745–1777.
  • O. Bratteli, D. W. Robinson: Operator Algebras and Quantum Statistical Mechanics I, Springer-Verlag, Berlin (1979).
  • R. V. Kadison, J. R. Ringrose: Fundamentals of the Theory of Operator Algebras, I, Academic Press, New York (1983).
  • G. Köthe: Topological Vector Spaces, II, Springer-Verlag, New York (1979).
  • J. Foran: An extension of the Denjoy integral, Proc. Amer. Math. Soc., 49 (1975), 359–365.
  • R. A. Gordon: The integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics, 4, American Mathematical Society, Providence (1994).
  • J. Kurzweil: Nichtalsolut Konvergente Integrale, Teubner, Leipzig (1980).
  • J. Lu, P.Y. Lee: The primitives of Henstock integrable functions in Euclidean space, Bull. London Math. Soc., 31 (1999), 173–180.
  • E. Nelson: Note on non-commutative integration, J. Funct. Anal., 15 (1974), 103–116.
  • C. La Russa, S. Triolo: Radon-Nikodym theorem in quasi *-algebras, J. Operator Theory, 69 (2) (2013), 423-–433.
  • E. Malkowsky, V. Rakoˇcevi´c: Advanced Functional Analysis 1st Edition, (2019) ISBN 978-1138337152
  • T. Ogasawara, K. Yoshinaga: A non commutative theory of integration for operators, J. Sci. Hiroshima Univ., 18 (1955), 312–347.
  • W. Rudin: Real and Complex Analysis, Mc-Graw-Hill (1966).
  • I. E. Segal: A noncommutative extension of abstract integration, Ann. Math., 57 (1953), 401–457.
  • S. Triolo: WQ*-Algebras of measurable operators, Indian J. Pure Appl. Math., 43 (6) (2012), 601–617.
  • S. Triolo: Possible extensions of the noncommutative integral, Rend. Circ. Mat. Palermo, 60 (3) (2011), 409–416.
  • C. Trapani, S.Triolo: Representations of certain banach C∗− modules, Mediterr. J. Math., 1 (4) (2004), 441–461.
  • G. Bellomonte, C. Trapani and S. Triolo: Absolutely Convergent Extensions of Nonclosable Positive Linear Functionals., Mediterr. J. Math., 7 (2010), 63–74.
Year 2023, Volume: 6 Issue: 4, 198 - 209, 15.12.2023
https://doi.org/10.33205/cma.1310238

Abstract

References

  • A. Bikchentaev: The algebra of thin measurable operators is directly finite, Constr. Math. Anal., 6 (1) (2023), 1–5.
  • F. Burderi, C. Trapani and S.Triolo: Extensions of hermitian linear functionals, Banach J. Math. Anal., 16 (3) (2022), 45.
  • B. Bongiorno, C. Trapani and S.Triolo: Extensions of positive linea functionals on a Topological *-algebra, Rocky Mountain Journal of Mathematics, 40 (6) (2010), 1745–1777.
  • O. Bratteli, D. W. Robinson: Operator Algebras and Quantum Statistical Mechanics I, Springer-Verlag, Berlin (1979).
  • R. V. Kadison, J. R. Ringrose: Fundamentals of the Theory of Operator Algebras, I, Academic Press, New York (1983).
  • G. Köthe: Topological Vector Spaces, II, Springer-Verlag, New York (1979).
  • J. Foran: An extension of the Denjoy integral, Proc. Amer. Math. Soc., 49 (1975), 359–365.
  • R. A. Gordon: The integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics, 4, American Mathematical Society, Providence (1994).
  • J. Kurzweil: Nichtalsolut Konvergente Integrale, Teubner, Leipzig (1980).
  • J. Lu, P.Y. Lee: The primitives of Henstock integrable functions in Euclidean space, Bull. London Math. Soc., 31 (1999), 173–180.
  • E. Nelson: Note on non-commutative integration, J. Funct. Anal., 15 (1974), 103–116.
  • C. La Russa, S. Triolo: Radon-Nikodym theorem in quasi *-algebras, J. Operator Theory, 69 (2) (2013), 423-–433.
  • E. Malkowsky, V. Rakoˇcevi´c: Advanced Functional Analysis 1st Edition, (2019) ISBN 978-1138337152
  • T. Ogasawara, K. Yoshinaga: A non commutative theory of integration for operators, J. Sci. Hiroshima Univ., 18 (1955), 312–347.
  • W. Rudin: Real and Complex Analysis, Mc-Graw-Hill (1966).
  • I. E. Segal: A noncommutative extension of abstract integration, Ann. Math., 57 (1953), 401–457.
  • S. Triolo: WQ*-Algebras of measurable operators, Indian J. Pure Appl. Math., 43 (6) (2012), 601–617.
  • S. Triolo: Possible extensions of the noncommutative integral, Rend. Circ. Mat. Palermo, 60 (3) (2011), 409–416.
  • C. Trapani, S.Triolo: Representations of certain banach C∗− modules, Mediterr. J. Math., 1 (4) (2004), 441–461.
  • G. Bellomonte, C. Trapani and S. Triolo: Absolutely Convergent Extensions of Nonclosable Positive Linear Functionals., Mediterr. J. Math., 7 (2010), 63–74.
There are 20 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Articles
Authors

Fabio Burderi 0000-0002-1380-867X

Camillo Trapanı 0000-0001-9386-4403

Salvatore Triolo 0000-0002-9729-2657

Early Pub Date September 28, 2023
Publication Date December 15, 2023
Published in Issue Year 2023 Volume: 6 Issue: 4

Cite

APA Burderi, F., Trapanı, C., & Triolo, S. (2023). Maximal extensions of a linear functional. Constructive Mathematical Analysis, 6(4), 198-209. https://doi.org/10.33205/cma.1310238
AMA Burderi F, Trapanı C, Triolo S. Maximal extensions of a linear functional. CMA. December 2023;6(4):198-209. doi:10.33205/cma.1310238
Chicago Burderi, Fabio, Camillo Trapanı, and Salvatore Triolo. “Maximal Extensions of a Linear Functional”. Constructive Mathematical Analysis 6, no. 4 (December 2023): 198-209. https://doi.org/10.33205/cma.1310238.
EndNote Burderi F, Trapanı C, Triolo S (December 1, 2023) Maximal extensions of a linear functional. Constructive Mathematical Analysis 6 4 198–209.
IEEE F. Burderi, C. Trapanı, and S. Triolo, “Maximal extensions of a linear functional”, CMA, vol. 6, no. 4, pp. 198–209, 2023, doi: 10.33205/cma.1310238.
ISNAD Burderi, Fabio et al. “Maximal Extensions of a Linear Functional”. Constructive Mathematical Analysis 6/4 (December 2023), 198-209. https://doi.org/10.33205/cma.1310238.
JAMA Burderi F, Trapanı C, Triolo S. Maximal extensions of a linear functional. CMA. 2023;6:198–209.
MLA Burderi, Fabio et al. “Maximal Extensions of a Linear Functional”. Constructive Mathematical Analysis, vol. 6, no. 4, 2023, pp. 198-09, doi:10.33205/cma.1310238.
Vancouver Burderi F, Trapanı C, Triolo S. Maximal extensions of a linear functional. CMA. 2023;6(4):198-209.