Research Article
BibTex RIS Cite

Convergence estimates for some composition operators

Year 2024, Volume: 7 Issue: 2, 69 - 76, 15.06.2024
https://doi.org/10.33205/cma.1474535

Abstract

There are different methods available in literature to construct a new operator. One of the methods to construct an operator is the composition method. It is known that Baskakov operators can be achieved by composition of Post Widder $P_n$ and Sz\'asz-Mirakjan $S_n$ operators in that order, which is a discretely defined operator. But when we consider different order composition namely $S_n\circ P_n$, we get another different operator. Here we study such and we establish some convergence estimates for the composition operators $S_n\circ P_n$, along with difference with other operators. Finally we found the difference between two compositions by considering numeric values.

References

  • U. Abel, V. Gupta: On Composition of integral-type operators and discrete operators, Math Pannonica, (2024), DOI: https://doi.org/10.1556/314.2024.00001
  • T. Acar, A. Aral and I. Ra¸sa: Positive linear operators preserving τ and τ2, Constr. Math. Anal., 2 (3) (2019), 98–102.
  • T. Acar, V. Gupta and A. Aral: Rate of convergence for generalized Szász operators, Bull. Math. Sci., 1 (2011), 99–113.
  • A. M. Acu, T. Acar and V. A. Radu: Approximation by modified Uρn operators, Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM, 113 (2019), 2715–2729 .
  • J. A. Adell, J. de la Cal: Preservation of moduli of continuity for Bernstein-type operators, In Proceedings of the International Conference on Approximation, Probability and Related Fields, Santa Barbara, (Edited by G. A. Anastassiou and S. T. Rachev), pp. 1-18, Plenum, (1994).
  • A. Aral: On a new approach in the space of measurable functions, Constr. Math. Anal., 6 (4) (2023), 237–248.
  • A. Aral, V. Gupta: On the q analogue of Stancu-Beta operators, Applied Mathematics Letters, 25 (1) (2012), 67–71.
  • J. Bustamante: Directs estimates and a Voronovskaja-type formula for Mihesan operators, Constr. Math. Anal., 5 (4) (2022), 202–213.
  • J. Bustamante: Weighted approximation by generalized Baskakov operators reproducing affine functions, Modern Math. Methods, 1 (1) (2023), 30–42.
  • R. A. DeVore, G. G. Lorentz: Constructive Approximation, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York-London (1933).
  • O. Dogru, V. Gupta: Monotonicity and the asymptotic estimate of Bleimann Butzer and Hahn operators based on q-integers, Georgian Mathematical J., 12 (3) (2005), 415–422.
  • Z. Finta: King operators which preserve xj , Constr. Math. Anal., 6 (2) (2023), 90–101.
  • A. D. Gadjiev: The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P. P. Korovkin, Dokl. Akad. Nauk SSSR, V. 218, N. 5, 1974, pp. 1001–1004.
  • N. K. Govil, V. Gupta and D. Soyba¸s: Certain new classes of Durrmeyer type operators, Appl. Math. Comput., 225 (2013), 195–203.
  • V. Gupta: Convergence of operators based on some special functions, Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM, 118 (2024), 99.
  • V. Gupta: New operators based on Laguerre polynomials, Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM, 118 (2024), 19.
  • V. Gupta: Convergence estimates for gamma operator, Bull. Malays. Math. Sci. Soc., 43 (3) (2020), 2065–2075.
  • V. Gupta: A form of Gamma operators due to Rathore, Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM, 117 (2023), 81.
  • V. Gupta, N. Malik: Direct estimations of new generalized Baskakov-Szász operators, Publ. Math. Inst. (Beograd), 99 (113) (2016), 265–279.
  • V. Gupta, G. Tachev: Approximation with Positive Linear Operators and Linear Combinations, Series: Developments in Mathematics, 50, Springer, Cham (2017).
  • V. Gupta, G. Tachev: General form of Voronovskaja’s theorem in terms of weighted modulus of continuity, Results Math., 69 (3-4) (2016), 419–430.
  • V. Gupta, G. Tachev and A. M. Acu: Modified Kantorovich operators with better approximation properties, Numer Algor., 81 (2019), 125–149.
  • N. Ispir: On modified Baskakov operators on weighted spaces, Turkish J. Math., 25 (2001), 355–365.
  • R. Pˇaltˇanea: Estimates of approximation in terms of a weighted modulus of continuity, Bull. Transilvania Univ. Brasov, 4 (53) (2011), 67–74.
Year 2024, Volume: 7 Issue: 2, 69 - 76, 15.06.2024
https://doi.org/10.33205/cma.1474535

Abstract

References

  • U. Abel, V. Gupta: On Composition of integral-type operators and discrete operators, Math Pannonica, (2024), DOI: https://doi.org/10.1556/314.2024.00001
  • T. Acar, A. Aral and I. Ra¸sa: Positive linear operators preserving τ and τ2, Constr. Math. Anal., 2 (3) (2019), 98–102.
  • T. Acar, V. Gupta and A. Aral: Rate of convergence for generalized Szász operators, Bull. Math. Sci., 1 (2011), 99–113.
  • A. M. Acu, T. Acar and V. A. Radu: Approximation by modified Uρn operators, Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM, 113 (2019), 2715–2729 .
  • J. A. Adell, J. de la Cal: Preservation of moduli of continuity for Bernstein-type operators, In Proceedings of the International Conference on Approximation, Probability and Related Fields, Santa Barbara, (Edited by G. A. Anastassiou and S. T. Rachev), pp. 1-18, Plenum, (1994).
  • A. Aral: On a new approach in the space of measurable functions, Constr. Math. Anal., 6 (4) (2023), 237–248.
  • A. Aral, V. Gupta: On the q analogue of Stancu-Beta operators, Applied Mathematics Letters, 25 (1) (2012), 67–71.
  • J. Bustamante: Directs estimates and a Voronovskaja-type formula for Mihesan operators, Constr. Math. Anal., 5 (4) (2022), 202–213.
  • J. Bustamante: Weighted approximation by generalized Baskakov operators reproducing affine functions, Modern Math. Methods, 1 (1) (2023), 30–42.
  • R. A. DeVore, G. G. Lorentz: Constructive Approximation, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York-London (1933).
  • O. Dogru, V. Gupta: Monotonicity and the asymptotic estimate of Bleimann Butzer and Hahn operators based on q-integers, Georgian Mathematical J., 12 (3) (2005), 415–422.
  • Z. Finta: King operators which preserve xj , Constr. Math. Anal., 6 (2) (2023), 90–101.
  • A. D. Gadjiev: The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P. P. Korovkin, Dokl. Akad. Nauk SSSR, V. 218, N. 5, 1974, pp. 1001–1004.
  • N. K. Govil, V. Gupta and D. Soyba¸s: Certain new classes of Durrmeyer type operators, Appl. Math. Comput., 225 (2013), 195–203.
  • V. Gupta: Convergence of operators based on some special functions, Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM, 118 (2024), 99.
  • V. Gupta: New operators based on Laguerre polynomials, Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM, 118 (2024), 19.
  • V. Gupta: Convergence estimates for gamma operator, Bull. Malays. Math. Sci. Soc., 43 (3) (2020), 2065–2075.
  • V. Gupta: A form of Gamma operators due to Rathore, Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM, 117 (2023), 81.
  • V. Gupta, N. Malik: Direct estimations of new generalized Baskakov-Szász operators, Publ. Math. Inst. (Beograd), 99 (113) (2016), 265–279.
  • V. Gupta, G. Tachev: Approximation with Positive Linear Operators and Linear Combinations, Series: Developments in Mathematics, 50, Springer, Cham (2017).
  • V. Gupta, G. Tachev: General form of Voronovskaja’s theorem in terms of weighted modulus of continuity, Results Math., 69 (3-4) (2016), 419–430.
  • V. Gupta, G. Tachev and A. M. Acu: Modified Kantorovich operators with better approximation properties, Numer Algor., 81 (2019), 125–149.
  • N. Ispir: On modified Baskakov operators on weighted spaces, Turkish J. Math., 25 (2001), 355–365.
  • R. Pˇaltˇanea: Estimates of approximation in terms of a weighted modulus of continuity, Bull. Transilvania Univ. Brasov, 4 (53) (2011), 67–74.
There are 24 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Articles
Authors

Vijay Gupta 0000-0002-5768-5763

Ruchi Gupta This is me 0000-0002-1159-0099

Early Pub Date June 4, 2024
Publication Date June 15, 2024
Submission Date April 27, 2024
Acceptance Date June 2, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Gupta, V., & Gupta, R. (2024). Convergence estimates for some composition operators. Constructive Mathematical Analysis, 7(2), 69-76. https://doi.org/10.33205/cma.1474535
AMA Gupta V, Gupta R. Convergence estimates for some composition operators. CMA. June 2024;7(2):69-76. doi:10.33205/cma.1474535
Chicago Gupta, Vijay, and Ruchi Gupta. “Convergence Estimates for Some Composition Operators”. Constructive Mathematical Analysis 7, no. 2 (June 2024): 69-76. https://doi.org/10.33205/cma.1474535.
EndNote Gupta V, Gupta R (June 1, 2024) Convergence estimates for some composition operators. Constructive Mathematical Analysis 7 2 69–76.
IEEE V. Gupta and R. Gupta, “Convergence estimates for some composition operators”, CMA, vol. 7, no. 2, pp. 69–76, 2024, doi: 10.33205/cma.1474535.
ISNAD Gupta, Vijay - Gupta, Ruchi. “Convergence Estimates for Some Composition Operators”. Constructive Mathematical Analysis 7/2 (June 2024), 69-76. https://doi.org/10.33205/cma.1474535.
JAMA Gupta V, Gupta R. Convergence estimates for some composition operators. CMA. 2024;7:69–76.
MLA Gupta, Vijay and Ruchi Gupta. “Convergence Estimates for Some Composition Operators”. Constructive Mathematical Analysis, vol. 7, no. 2, 2024, pp. 69-76, doi:10.33205/cma.1474535.
Vancouver Gupta V, Gupta R. Convergence estimates for some composition operators. CMA. 2024;7(2):69-76.