Research Article
BibTex RIS Cite

Some integral inequalities of Hermite--Hadamard type for $(\beta,F)$-log-convex functions

Year 2025, Volume: 8 Issue: 3, 156 - 164, 15.09.2025
https://doi.org/10.33205/cma.1733628

Abstract

In the paper, the authors introduce the notion of $(\beta,F)$-log-convex functions, give an example of the $(\beta,F)$-log-convex functions, and, by virtue of two known integral identities, establish several integral inequalities of the Hermite--Hadamard type for $(\beta,F)$-log-convex functions.

References

  • M. Adamek: On a problem connected with strongly convex functions, Math. Inequal. Appl., 19(4) (2016), 1287–1293.
  • M. Adamek: On Hermite–Hadamard type inequalities for F-convex functions, J. Math. Inequal., 14(3) (2020), 867–874.
  • M. Adamek: On F-convex functions, J. Convex Anal., 28(3) (2021), 761–770.
  • S. S. Dragomir, R. P. Agarwal: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91–95.
  • S. S. Dragomir, C. E. M. Pearce: Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University (2002).
  • U. S. Kirmaci: Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147(1) (2004), 137–146.
  • N. Merentes, K. Nikodem: Remarks on strongly convex functions, Aequationes Math., 80(1-2) (2010), 193–199.
  • C. E. M. Pearce, J. Peˇcari´c: Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13(2) (2000), 51–55.
  • J. E. Peˇcari´c, F. Proschan, and Y. L. Tong: Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston (1992).
  • B. T. Polyak: Existence theorems and convergence of minimizing sequences in extremum problems with restictions, Soviet Math. Dokl., 7 (1966), 72–75.
  • Y. Shuang, F. Qi: Integral inequalities of Hermite–Hadamard type for GA-F-convex functions, AIMS Math., 6(9) (2021), 9582–9589.
  • Y. Wang, X.-M. Liu, and B.-N. Guo: Several integral inequalities of the Hermite–Hadamard type for s-(β, F)-convex functions, ScienceAsia, 49 (2) (2023), 200–204.
There are 12 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Articles
Authors

Yan Wang 0000-0002-0368-7106

Ximin Liu 0000-0002-4827-7936

Bo-yan Xi 0000-0003-4528-2331

Feng Qi 0000-0001-6239-2968

Early Pub Date September 12, 2025
Publication Date September 15, 2025
Submission Date July 3, 2025
Acceptance Date September 11, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Wang, Y., Liu, X., Xi, B.- yan, Qi, F. (2025). Some integral inequalities of Hermite--Hadamard type for $(\beta,F)$-log-convex functions. Constructive Mathematical Analysis, 8(3), 156-164. https://doi.org/10.33205/cma.1733628
AMA Wang Y, Liu X, Xi B yan, Qi F. Some integral inequalities of Hermite--Hadamard type for $(\beta,F)$-log-convex functions. CMA. September 2025;8(3):156-164. doi:10.33205/cma.1733628
Chicago Wang, Yan, Ximin Liu, Bo-yan Xi, and Feng Qi. “Some Integral Inequalities of Hermite--Hadamard Type for $(\beta,F)$-Log-Convex Functions”. Constructive Mathematical Analysis 8, no. 3 (September 2025): 156-64. https://doi.org/10.33205/cma.1733628.
EndNote Wang Y, Liu X, Xi B- yan, Qi F (September 1, 2025) Some integral inequalities of Hermite--Hadamard type for $(\beta,F)$-log-convex functions. Constructive Mathematical Analysis 8 3 156–164.
IEEE Y. Wang, X. Liu, B.- yan Xi, and F. Qi, “Some integral inequalities of Hermite--Hadamard type for $(\beta,F)$-log-convex functions”, CMA, vol. 8, no. 3, pp. 156–164, 2025, doi: 10.33205/cma.1733628.
ISNAD Wang, Yan et al. “Some Integral Inequalities of Hermite--Hadamard Type for $(\beta,F)$-Log-Convex Functions”. Constructive Mathematical Analysis 8/3 (September2025), 156-164. https://doi.org/10.33205/cma.1733628.
JAMA Wang Y, Liu X, Xi B- yan, Qi F. Some integral inequalities of Hermite--Hadamard type for $(\beta,F)$-log-convex functions. CMA. 2025;8:156–164.
MLA Wang, Yan et al. “Some Integral Inequalities of Hermite--Hadamard Type for $(\beta,F)$-Log-Convex Functions”. Constructive Mathematical Analysis, vol. 8, no. 3, 2025, pp. 156-64, doi:10.33205/cma.1733628.
Vancouver Wang Y, Liu X, Xi B- yan, Qi F. Some integral inequalities of Hermite--Hadamard type for $(\beta,F)$-log-convex functions. CMA. 2025;8(3):156-64.