Research Article
BibTex RIS Cite

General evaluation of suborbital graphs

Year 2018, Volume: 3 Issue: 1, 42 - 50, 30.04.2018

Abstract

In this paper, we aim to review suborbital graphs and also give an example to an extension of directed graphs.


References

  • [1] Sims C.C., Graphs and finite permutation groups, Mathematische Zeitschrift, Vol:95, 76-86, (1967).
  • [2] Jones G.A., Singerman D. andWicks K.,The modular group and generalized Farey graphs, LondonMathematical Society, Vol:160, 316-338, (1991).
  • [3] Biggs N.L., White A.T., Permutation groups and combinatorial structures, Cambridge University Press, Cambridge, (1979).
  • [4] Akbas¸ M., Bas¸kan T., Suborbital graphs for the normalizer of G0(N), Turkish Journal of Mathematics, Vol:20, 379-387, (1996).
  • [5] Akbas¸ M., Singerman D.,The normalizer of G0(N) in PSL(2,R), Glasgow Mathematical Journal, Vol:32, 317-327, (1990).
  • [6] Akbas¸ M., Singerman D., The signature of the normalizer of G0(N), London Mathematical Society, Vol:165, 77-86, (1992).
  • [7] Bes¸enk M., G¨uler B.¨O., De˘ger A.H., Kader S., Conditions to be a forest for normalizer, International Journal of Mathematical Analysis, Vol:4, 1635-1643, (2010).
  • [8] G¨uler B.¨O., K¨oro˘glu T., S¸anlı Z., Solutions to some congruence equations via suborbital graphs, SpringerPlus, Vol:1327, 1-11, (2016).
  • [9] G¨uler B.¨O., Kader S., Self-paired edges for the normalizer, Algebras Groups and Geometries, Vol:27, 369-376, (2010).
  • [10] G¨uler B.¨O., Kader S., Some properties of the normalizer of G0(N) on graphs, Journal of Applied Mathematics, Statistics and Informatics, Vol:4, 77-87, (2008).
  • [11] G¨uler B.¨O., Kader S., A note on genus problem and conjugation of the normalizer, New Trends in Mathematical Sciences, Vol:5, 117-122, (2017).
  • [12] Keskin R., Demirt¨urk B., On suborbital graphs for the normalizer of G0(N), The Electronic Journal of Combinatorics, Vol:16, 1-18, (2009).
  • [13] Keskin R., Suborbital graphs for the normalizer of G0(m), European Journal of Combinatorics, Vol:27, 193-206, (2006).
  • [14] K¨oro˘glu T., G¨uler B.¨O., S¸anlı Z., Some generalized suborbital graphs, Turkish Journal of Mathematics and Computer Science, Vol:7, 90-95, (2017).
  • [15] Bes¸enk M., De˘ger A.H., G¨uler B.¨O., An application on suborbital graphs, American Institute of Physics Conference Proceedings, Vol:1470, 187-190, (2012).
Year 2018, Volume: 3 Issue: 1, 42 - 50, 30.04.2018

Abstract

References

  • [1] Sims C.C., Graphs and finite permutation groups, Mathematische Zeitschrift, Vol:95, 76-86, (1967).
  • [2] Jones G.A., Singerman D. andWicks K.,The modular group and generalized Farey graphs, LondonMathematical Society, Vol:160, 316-338, (1991).
  • [3] Biggs N.L., White A.T., Permutation groups and combinatorial structures, Cambridge University Press, Cambridge, (1979).
  • [4] Akbas¸ M., Bas¸kan T., Suborbital graphs for the normalizer of G0(N), Turkish Journal of Mathematics, Vol:20, 379-387, (1996).
  • [5] Akbas¸ M., Singerman D.,The normalizer of G0(N) in PSL(2,R), Glasgow Mathematical Journal, Vol:32, 317-327, (1990).
  • [6] Akbas¸ M., Singerman D., The signature of the normalizer of G0(N), London Mathematical Society, Vol:165, 77-86, (1992).
  • [7] Bes¸enk M., G¨uler B.¨O., De˘ger A.H., Kader S., Conditions to be a forest for normalizer, International Journal of Mathematical Analysis, Vol:4, 1635-1643, (2010).
  • [8] G¨uler B.¨O., K¨oro˘glu T., S¸anlı Z., Solutions to some congruence equations via suborbital graphs, SpringerPlus, Vol:1327, 1-11, (2016).
  • [9] G¨uler B.¨O., Kader S., Self-paired edges for the normalizer, Algebras Groups and Geometries, Vol:27, 369-376, (2010).
  • [10] G¨uler B.¨O., Kader S., Some properties of the normalizer of G0(N) on graphs, Journal of Applied Mathematics, Statistics and Informatics, Vol:4, 77-87, (2008).
  • [11] G¨uler B.¨O., Kader S., A note on genus problem and conjugation of the normalizer, New Trends in Mathematical Sciences, Vol:5, 117-122, (2017).
  • [12] Keskin R., Demirt¨urk B., On suborbital graphs for the normalizer of G0(N), The Electronic Journal of Combinatorics, Vol:16, 1-18, (2009).
  • [13] Keskin R., Suborbital graphs for the normalizer of G0(m), European Journal of Combinatorics, Vol:27, 193-206, (2006).
  • [14] K¨oro˘glu T., G¨uler B.¨O., S¸anlı Z., Some generalized suborbital graphs, Turkish Journal of Mathematics and Computer Science, Vol:7, 90-95, (2017).
  • [15] Bes¸enk M., De˘ger A.H., G¨uler B.¨O., An application on suborbital graphs, American Institute of Physics Conference Proceedings, Vol:1470, 187-190, (2012).
There are 15 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Murat Beşenk

Publication Date April 30, 2018
Published in Issue Year 2018 Volume: 3 Issue: 1

Cite

APA Beşenk, M. (2018). General evaluation of suborbital graphs. Communication in Mathematical Modeling and Applications, 3(1), 42-50.
AMA Beşenk M. General evaluation of suborbital graphs. CMMA. April 2018;3(1):42-50.
Chicago Beşenk, Murat. “General Evaluation of Suborbital Graphs”. Communication in Mathematical Modeling and Applications 3, no. 1 (April 2018): 42-50.
EndNote Beşenk M (April 1, 2018) General evaluation of suborbital graphs. Communication in Mathematical Modeling and Applications 3 1 42–50.
IEEE M. Beşenk, “General evaluation of suborbital graphs”, CMMA, vol. 3, no. 1, pp. 42–50, 2018.
ISNAD Beşenk, Murat. “General Evaluation of Suborbital Graphs”. Communication in Mathematical Modeling and Applications 3/1 (April 2018), 42-50.
JAMA Beşenk M. General evaluation of suborbital graphs. CMMA. 2018;3:42–50.
MLA Beşenk, Murat. “General Evaluation of Suborbital Graphs”. Communication in Mathematical Modeling and Applications, vol. 3, no. 1, 2018, pp. 42-50.
Vancouver Beşenk M. General evaluation of suborbital graphs. CMMA. 2018;3(1):42-50.