Loading [a11y]/accessibility-menu.js
 
BibTex RIS Cite

EFFECTS OF GLOBAL-WARMING AND CLIMATE-CHANGES ON ATMOSPHERIC FUNGI SPORES DISTRIBUTION

Year 2018, Volume: 27 Issue: 2, 263 - 272, 01.12.2018
https://doi.org/10.1501/commuc_0000000223

Abstract

Atmosphere is described as the gas and vapor layer surrounding the earth under the gravitational force. Atmosphere is composed of 78.50 % Nitrogen, 21.01 % Oxygen, 0.04% carbon-dioxide, water vapor and Nobel gases. In addition to ground, air and sea transportation vehicles, those noxious gases and particulates are released into atmosphere from houses and industry. In the past century, increased population, uncontrolled and inappropriate urbanization dramatically affected the content of atmosphere, which resulted in thinning of ozone layer and global warming. All these then turn into climate changes related problems. Besides chemical particulates, a variety of biological particulates are released into atmosphere as well. Major biological particulates in atmosphere are fungi spores and splits of fungi hyphae. Fungi can grow on any organic matter under humid conditions including shoe leather, which can tolerate low light and low temperature that makes them most widely distributed living group. Even though Fungi can release toxin and allergic agents cause infection to human, animals and plants. In contrast to this, the Fungi can be used as fermentation, bio-conversation, antibiotics and enzyme production, and biological control agent. Alteration in physical and chemical composition of atmosphere can affect soil chemistry and morphology. Similarly, the alteration can affect life-cycle, distribution and ecological performance of fungi as well. Recent field studies have revealed that transfer of increased chemical pollutants in atmosphere to soil and water structures poses negative effects on symbiotic mushroom species. Increased carbon-dioxide content of atmosphere trigger expansion of vegetation periods and increase in biomass, which turns into extension of vegetation period of symbiotic fungi. Besides, global warming alters vegetation period of a variety of fungi species. According to experimental and modelling studies done on filamentous fungi species (commonly seen in atmosphere), increased hyphae production, extended sporulation period and decreased spore synthesis were reported in response to increase in atmospheric temperature. In the light of current knowledge, it can be speculated that elongated exposure of fungi spores and hyphae will be faced, and even unprecedented allergen species will be identified in response to the altered atmospheric stress parameters.

References

  • [1] C.S. Aksay, O. Ketenoglu, L. Kurt, Küresel ısınma ve iklim değişikliği. Selçuk Unversitesi Fen Ededebiyat Fakultesi Fen Dergisi, 25, (2005) 29-41.
  • [2] T. Ceter, Long-term pollen transport and the effect of global warming on pollen dispersal and allergenity, Türkiye Klinikleri Journal Allergy-Special Topics, 4(1), (2011) 25-30.
  • [3] J.K. Casper, Global warming cycles: ice ages and glacial retreat. Facts On File, Inc. An imprint of Infobase Publishing. New York. USA. (2010) 230.
  • [4 ] P.D. Colley, Possible effect of climate change on plant/herbivore interactions in moist tropical forest. Climatic Change, 39, (1998) 455-472.
  • [5] W. Thuiller, S. Lavorel, M.B. Arau´jo, M.T. Sykes, I.C. Prentice, Climate change threats to plant diversity in Europe. PNAS, 102(23), (2005) 8245-50.
  • [6] N.A. Campbell, and J.B. Recee, Biology. Sixth Edition, Benjamin Cummings-Pearson Education. (2006).
  • [7] S. Ceter, Giresun Atmosferinde Alerjik Mantar Spor Konsantrasyonunun Incelenmesi, Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2016.
  • [8] K.F. Adams, Year to year variation in the fungus spore content of the atmosphere. Acta Allergologica, 19, (1964) 11-50.
  • [9] T.Z. Mitakakis and D.I. Guest, A fungal spore calendar for the atmosphere of Melbourne, Australia, for the year 1993. Aerobiologia, 17, (2001) 171- 176.
  • [10] M.R. Diaz, I. Iglesis and V. Jato, Seasonal variation of airborne fungal spore concentrations in a vineyard of North-West Spain. Aerobiologia, 14, (1998), 221-227.
  • [11] T. Ceter, N.M. Pınar, S. Alan, and O.Yıldırım, Polen ve sporların haricinde atmosferde bulunan allerjen biyolojik partiküller. Astım Allerji İmmünoloji, 6(1), (2008) 5-10.
  • [12] I. Kasprzyk, Aeromycology–main research fields of interest during the last 25 years. Annals of Agricultural and Environmental Medicine, 15, (2008) 1- 7.
  • [13] T. Ceter and N.M. Pınar, 2003 yılında Ankara atmosferi mantar sporları konsantrasyonu ve meteorolojik faktörlerin etkisi. Mikrobiyoloji Bülteni, 43(4), (2009) 627-638.
  • [14] C. Calderon, J. Lacey, A. MaCartney and I. Rosas, Seasonal and diurnal variation of airborne basidiomycete spore concentrations in Mexico City. Grana, 34, (1995) 260-268.
  • [15] C. Calderon, J. Lacey, A. MaCartney and I. Rosas, Influence of urban climate upon distribution of airborne Deuteromycetes spore concentrations in Mexico City. International Journal of Biometeorology, 40, (1997) 71-80.
  • [16] M. Burch and E. Levetin, Effects of meteorological conditions on spore plumes. International Journal of Biometeorology, 46, (2002) 107-117.
  • [17] D. Southworth, Introduction to the biology of airborne fungal spores. Annals of Allergy, Asthma and Immunology, 32, (1974) 1-22.
  • [18] I. Kasprzyk, B. Rzepowska, M. Wasylów, Fungal spores in the atmosphere of Rzeszów (South-East Poland). Annals of Agricultural and Environmental Medicine, 11, (2004) 285-289.
  • [19] S. Bavbek, F.O. Erkekol, T. Çeter, D. Mungan, F. Ozer, N.M. Pinar and Z. Misirligil, Sensitization to Alternaria and Cladosporium in Patients with Respiratory Allergy and Outdoor Counts of Mold Spores in Ankara Atmosphere, Turkey. Journal of Asthma, 43(6), (2006) 421-426.
  • [20] A. Inal, G.B. Karakoc, D.U. Altintas, M. Pinar, T. Ceter, M. Yilmaz, S.G. Kendirli, Effect of outdoor fungus concentrations on symptom severity of children with asthma and/or rhinitis monosensitized to molds. Asian Pacific Journal of Allergy and Immunology, 26(1), (2008) 11-17.
  • [21] T. Ceter, N.M. Pınar, A. Yildiz and K. Güney, Two year concentrations of allergen atmospheric fungal spores in Kastamonu, Turkey (2006-2007). Allergy, 64(90), (2009) 421-421.
  • [22] M. Kilic, D.U. Altintas, M. Yilmaz, S. Guneser Kendirli, G. Bingol Karakoc, E. Taskin, T. Ceter and N.M. Pinar, The effects of meteorological factors and Alternaria spore concentrations on children sensitised to Alternaria. Allergologia et Immunopathologia, 38(3), (2010) 122-128.
  • [23] A.S. Bulbul, T. Ceter and E. Huseyin, Kırşehir Atmosferi Mantar Sporları Konsantrasyonu Ve Meteorolojik Faktörlerin Etkisi. Astım Allerji Immunoloji Dergisi, 9(3), (2011), 142-154.
  • [24] U.A. Yukselen, P. Akdag, H. Korkmaz Guvenmez, T. Ceter, M. Yılmaz, G. Bingol Karakoc, N.M. Pınar and D.U. Altıntas, Adana atmosferindeki fungal spor konsantrasyonlarının meteorolojik faktörlerle değişimi ve elde edilen fungal ekstrelerin deri prik testinde kullanımı. Astım Allerji Immunoloji Dergisi, 11(2), (2013) 103-111.
  • [25] T. Ceter, N.M. Pınar, H. Ozler. Assesment of allergenic airborne fugal spores in Sinop, Turkey. MedPalyno (Mediterranean Palynology Symposium), Rome, Italy; (2015) 25.
  • [26] S. Akdogan, T. Ceter, N.M. Pınar, 2-year Aeromycological survey of allergenic airborne fungal spores in Giresun, Turkey. Mediterranean Palynology Symposium, Rome, Italy (2015) 9.
  • [27] C.E. Mitchell, P.B. Reich, D. Tilman and J.V. Groth, Effect of elevated CO2, nitrogen depozition and decreased species diversity on foliar fungal plant diseas. Global Change Biology, 9, (2003) 438-451.
  • [28] J. Wolf, N.R. O’Neill, C.A. Rogers, M.L. Muilenberg and L.H. Ziska, Elevated atmospheric Carbon Dioxide concentrations amplify Alternaria alternata sporulation and total antigen production. Environmental Health Perspectives, 118(9), (2010) 1223-1228.
  • [29] T.E. Anne Cotton, A.H. Fitter, R.M. Miller, A.J. Dumbrell and T. Helgason, Fungi in the future_ interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities. New Phytologist, 205, (2015) 1598-1607.
  • [30] J.N. Klironomos, M.C. Rillig, M.F. Allen, D.R. Zak, K.S. Pregitzer and M.E. Kubiske, Increased levels of airborne fungal spores in response to Populus tremuloides grown under elevated atmospheric CO2. Canadian Journal of Botany. 75, (1997) 1670-1673.
  • [31] L.N. Morgado, T.A. Semenova, J.M. Welker, M.D. Walker, E. Smets and J. Geml, Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska. Global Change Biology, 21, (2015) 959-972.
  • [32] A. Damialis, A.B. Mohammad, J.M. Halley and A.C. Gange, Fungi in a changing world: growth rates will be elevated, but spore production may decrease in future climates. International Journal of Biometeorology, 59, (2015) 1157-1167.
  • [33] H. Kauserud, L.C. Stige, J.O. Vik, R.H. Økland, K. Høiland and N.C. Stenseth, Mushroom fruiting and climate change. Proceedings of the National Academy of Sciences of the United States of America, 105(10), (2008) 3811-3814.
  • [34] H. Kauserud, E. Heegaard, M.A. Semenov, L. Boddy, R. Halvorsen, L.C. Stige, T.H. Sparks, A.C. Gange and N.C. Stenseth, Climate change and spring-fruiting fungi. Procceeding of The Royal Society B, 277, (2010) 1169- 1177.
  • [35] H. Kauserud, E. Heegaard, R. Halvorsen, L. Boddy, K. Høiland and N.C. Stenseth, Mushroom’s spore size and time of fruiting are strongly related: is moisture important? Biology Letters 7, (2011) 273-276.
Year 2018, Volume: 27 Issue: 2, 263 - 272, 01.12.2018
https://doi.org/10.1501/commuc_0000000223

Abstract

References

  • [1] C.S. Aksay, O. Ketenoglu, L. Kurt, Küresel ısınma ve iklim değişikliği. Selçuk Unversitesi Fen Ededebiyat Fakultesi Fen Dergisi, 25, (2005) 29-41.
  • [2] T. Ceter, Long-term pollen transport and the effect of global warming on pollen dispersal and allergenity, Türkiye Klinikleri Journal Allergy-Special Topics, 4(1), (2011) 25-30.
  • [3] J.K. Casper, Global warming cycles: ice ages and glacial retreat. Facts On File, Inc. An imprint of Infobase Publishing. New York. USA. (2010) 230.
  • [4 ] P.D. Colley, Possible effect of climate change on plant/herbivore interactions in moist tropical forest. Climatic Change, 39, (1998) 455-472.
  • [5] W. Thuiller, S. Lavorel, M.B. Arau´jo, M.T. Sykes, I.C. Prentice, Climate change threats to plant diversity in Europe. PNAS, 102(23), (2005) 8245-50.
  • [6] N.A. Campbell, and J.B. Recee, Biology. Sixth Edition, Benjamin Cummings-Pearson Education. (2006).
  • [7] S. Ceter, Giresun Atmosferinde Alerjik Mantar Spor Konsantrasyonunun Incelenmesi, Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2016.
  • [8] K.F. Adams, Year to year variation in the fungus spore content of the atmosphere. Acta Allergologica, 19, (1964) 11-50.
  • [9] T.Z. Mitakakis and D.I. Guest, A fungal spore calendar for the atmosphere of Melbourne, Australia, for the year 1993. Aerobiologia, 17, (2001) 171- 176.
  • [10] M.R. Diaz, I. Iglesis and V. Jato, Seasonal variation of airborne fungal spore concentrations in a vineyard of North-West Spain. Aerobiologia, 14, (1998), 221-227.
  • [11] T. Ceter, N.M. Pınar, S. Alan, and O.Yıldırım, Polen ve sporların haricinde atmosferde bulunan allerjen biyolojik partiküller. Astım Allerji İmmünoloji, 6(1), (2008) 5-10.
  • [12] I. Kasprzyk, Aeromycology–main research fields of interest during the last 25 years. Annals of Agricultural and Environmental Medicine, 15, (2008) 1- 7.
  • [13] T. Ceter and N.M. Pınar, 2003 yılında Ankara atmosferi mantar sporları konsantrasyonu ve meteorolojik faktörlerin etkisi. Mikrobiyoloji Bülteni, 43(4), (2009) 627-638.
  • [14] C. Calderon, J. Lacey, A. MaCartney and I. Rosas, Seasonal and diurnal variation of airborne basidiomycete spore concentrations in Mexico City. Grana, 34, (1995) 260-268.
  • [15] C. Calderon, J. Lacey, A. MaCartney and I. Rosas, Influence of urban climate upon distribution of airborne Deuteromycetes spore concentrations in Mexico City. International Journal of Biometeorology, 40, (1997) 71-80.
  • [16] M. Burch and E. Levetin, Effects of meteorological conditions on spore plumes. International Journal of Biometeorology, 46, (2002) 107-117.
  • [17] D. Southworth, Introduction to the biology of airborne fungal spores. Annals of Allergy, Asthma and Immunology, 32, (1974) 1-22.
  • [18] I. Kasprzyk, B. Rzepowska, M. Wasylów, Fungal spores in the atmosphere of Rzeszów (South-East Poland). Annals of Agricultural and Environmental Medicine, 11, (2004) 285-289.
  • [19] S. Bavbek, F.O. Erkekol, T. Çeter, D. Mungan, F. Ozer, N.M. Pinar and Z. Misirligil, Sensitization to Alternaria and Cladosporium in Patients with Respiratory Allergy and Outdoor Counts of Mold Spores in Ankara Atmosphere, Turkey. Journal of Asthma, 43(6), (2006) 421-426.
  • [20] A. Inal, G.B. Karakoc, D.U. Altintas, M. Pinar, T. Ceter, M. Yilmaz, S.G. Kendirli, Effect of outdoor fungus concentrations on symptom severity of children with asthma and/or rhinitis monosensitized to molds. Asian Pacific Journal of Allergy and Immunology, 26(1), (2008) 11-17.
  • [21] T. Ceter, N.M. Pınar, A. Yildiz and K. Güney, Two year concentrations of allergen atmospheric fungal spores in Kastamonu, Turkey (2006-2007). Allergy, 64(90), (2009) 421-421.
  • [22] M. Kilic, D.U. Altintas, M. Yilmaz, S. Guneser Kendirli, G. Bingol Karakoc, E. Taskin, T. Ceter and N.M. Pinar, The effects of meteorological factors and Alternaria spore concentrations on children sensitised to Alternaria. Allergologia et Immunopathologia, 38(3), (2010) 122-128.
  • [23] A.S. Bulbul, T. Ceter and E. Huseyin, Kırşehir Atmosferi Mantar Sporları Konsantrasyonu Ve Meteorolojik Faktörlerin Etkisi. Astım Allerji Immunoloji Dergisi, 9(3), (2011), 142-154.
  • [24] U.A. Yukselen, P. Akdag, H. Korkmaz Guvenmez, T. Ceter, M. Yılmaz, G. Bingol Karakoc, N.M. Pınar and D.U. Altıntas, Adana atmosferindeki fungal spor konsantrasyonlarının meteorolojik faktörlerle değişimi ve elde edilen fungal ekstrelerin deri prik testinde kullanımı. Astım Allerji Immunoloji Dergisi, 11(2), (2013) 103-111.
  • [25] T. Ceter, N.M. Pınar, H. Ozler. Assesment of allergenic airborne fugal spores in Sinop, Turkey. MedPalyno (Mediterranean Palynology Symposium), Rome, Italy; (2015) 25.
  • [26] S. Akdogan, T. Ceter, N.M. Pınar, 2-year Aeromycological survey of allergenic airborne fungal spores in Giresun, Turkey. Mediterranean Palynology Symposium, Rome, Italy (2015) 9.
  • [27] C.E. Mitchell, P.B. Reich, D. Tilman and J.V. Groth, Effect of elevated CO2, nitrogen depozition and decreased species diversity on foliar fungal plant diseas. Global Change Biology, 9, (2003) 438-451.
  • [28] J. Wolf, N.R. O’Neill, C.A. Rogers, M.L. Muilenberg and L.H. Ziska, Elevated atmospheric Carbon Dioxide concentrations amplify Alternaria alternata sporulation and total antigen production. Environmental Health Perspectives, 118(9), (2010) 1223-1228.
  • [29] T.E. Anne Cotton, A.H. Fitter, R.M. Miller, A.J. Dumbrell and T. Helgason, Fungi in the future_ interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities. New Phytologist, 205, (2015) 1598-1607.
  • [30] J.N. Klironomos, M.C. Rillig, M.F. Allen, D.R. Zak, K.S. Pregitzer and M.E. Kubiske, Increased levels of airborne fungal spores in response to Populus tremuloides grown under elevated atmospheric CO2. Canadian Journal of Botany. 75, (1997) 1670-1673.
  • [31] L.N. Morgado, T.A. Semenova, J.M. Welker, M.D. Walker, E. Smets and J. Geml, Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska. Global Change Biology, 21, (2015) 959-972.
  • [32] A. Damialis, A.B. Mohammad, J.M. Halley and A.C. Gange, Fungi in a changing world: growth rates will be elevated, but spore production may decrease in future climates. International Journal of Biometeorology, 59, (2015) 1157-1167.
  • [33] H. Kauserud, L.C. Stige, J.O. Vik, R.H. Økland, K. Høiland and N.C. Stenseth, Mushroom fruiting and climate change. Proceedings of the National Academy of Sciences of the United States of America, 105(10), (2008) 3811-3814.
  • [34] H. Kauserud, E. Heegaard, M.A. Semenov, L. Boddy, R. Halvorsen, L.C. Stige, T.H. Sparks, A.C. Gange and N.C. Stenseth, Climate change and spring-fruiting fungi. Procceeding of The Royal Society B, 277, (2010) 1169- 1177.
  • [35] H. Kauserud, E. Heegaard, R. Halvorsen, L. Boddy, K. Høiland and N.C. Stenseth, Mushroom’s spore size and time of fruiting are strongly related: is moisture important? Biology Letters 7, (2011) 273-276.
There are 35 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Talip Ceter This is me

Publication Date December 1, 2018
Published in Issue Year 2018 Volume: 27 Issue: 2

Cite

Communications Faculty of Sciences University of Ankara Series C-Biology.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.